最近邻分类器(Nearest Neighbor Classifier)

先从简单的方法开始说,先提一提最近邻分类器/Nearest Neighbor Classifier,不过事先申明,它和深度学习中的卷积神经网/Convolutional Neural Networks其实一点关系都没有,我们只是从基础到前沿一点一点推进,最近邻是图像识别一个相对简单和基础的实现方式。

1.1 CIFAR-10

CIFAR-10是一个非常常用的图像分类数据集。数据集包含60000张32*32像素的小图片,每张图片都有一个类别标注(总共有10类),分成了50000张的训练集和10000张的测试集。如下是一些图片示例:

CIFAR-10例子

上图中左边是十个类别和对应的一些示例图片,右边是给定一张图片后,根据像素距离计算出来的,最近的10张图片。

1.2 基于最近邻的简单图像类别判定

假如现在用CIFAR-10数据集做训练集,判断一张未知的图片属于CIFAR-10中的哪一类,应该怎么做呢。一个很直观的想法就是,既然我们现在有每个像素点的值,那我们就根据输入图片的这些值,计算和训练集中的图片距离,找最近的图片的类别,作为它的类别,不就行了吗。

恩,想法很直接,这就是『最近邻』的思想。偷偷说一句,这种直接的做法在图像识别中,其实效果并不是特别好。比如上图是按照这个思想找的最近邻,其实只有3个图片的最近邻是正确的类目。

即使这样,作为最基础的方法,还是得掌握,我们来简单实现一下吧。我们需要一个图像距离评定准则,比如最简单的方式就是,比对两个图像像素向量之间的l1距离(也叫曼哈顿距离/cityblock距离),公式如下:

 

 

其实就是计算了所有像素点之间的差值,然后做了加法,直观的理解如下图:

矩阵的l1距离

我们先把数据集读进内存:

 
  1. #! /usr/bin/env python

  2. #coding=utf-8

  3. import os

  4. import sys

  5. import numpy as np

  6.  
  7. def load_CIFAR_batch(filename):

  8. """

  9. cifar-10数据集是分batch存储的,这是载入单个batch

  10.  
  11. @参数 filename: cifar文件名

  12. @r返回值: X, Y: cifar batch中的 data 和 labels

  13. """

  14.  
  15. with open(filename, 'r') as f:

  16. datadict=pickle.load(f)

  17.  
  18. X=datadict['data']

  19. Y=datadict['labels']

  20.  
  21. X=X.reshape(10000, 3, 32, 32).transpose(0,2,3,1).astype("float")

  22. Y=np.array(Y)

  23.  
  24. return X, Y

  25.  
  26.  
  27. def load_CIFAR10(ROOT):

  28. """

  29. 读取载入整个 CIFAR-10 数据集

  30.  
  31. @参数 ROOT: 根目录名

  32. @return: X_train, Y_train: 训练集 data 和 labels

  33. X_test, Y_test: 测试集 data 和 labels

  34. """

  35.  
  36. xs=[]

  37. ys=[]

  38.  
  39. for b in range(1,6):

  40. f=os.path.join(ROOT, "data_batch_%d" % (b, ))

  41. X, Y=load_CIFAR_batch(f)

  42. xs.append(X)

  43. ys.append(Y)

  44.  
  45. X_train=np.concatenate(xs)

  46. Y_train=np.concatenate(ys)

  47.  
  48. del X, Y

  49.  
  50. X_test, Y_test=load_CIFAR_batch(os.path.join(ROOT, "test_batch"))

  51.  
  52. return X_train, Y_train, X_test, Y_test

  53.  
  54. # 载入训练和测试数据集

  55. X_train, Y_train, X_test, Y_test = load_CIFAR10('data/cifar10/')

  56. # 把32*32*3的多维数组展平

  57. Xtr_rows = X_train.reshape(X_train.shape[0], 32 * 32 * 3) # Xtr_rows : 50000 x 3072

  58. Xte_rows = X_test.reshape(X_test.shape[0], 32 * 32 * 3) # Xte_rows : 10000 x 3072

下面我们实现最近邻的思路:

 
  1. class NearestNeighbor:

  2. def __init__(self):

  3. pass

  4.  
  5. def train(self, X, y):

  6. """

  7. 这个地方的训练其实就是把所有的已有图片读取进来 -_-||

  8. """

  9. # the nearest neighbor classifier simply remembers all the training data

  10. self.Xtr = X

  11. self.ytr = y

  12.  
  13. def predict(self, X):

  14. """

  15. 所谓的预测过程其实就是扫描所有训练集中的图片,计算距离,取最小的距离对应图片的类目

  16. """

  17. num_test = X.shape[0]

  18. # 要保证维度一致哦

  19. Ypred = np.zeros(num_test, dtype = self.ytr.dtype)

  20.  
  21. # 把训练集扫一遍 -_-||

  22. for i in xrange(num_test):

  23. # 计算l1距离,并找到最近的图片

  24. distances = np.sum(np.abs(self.Xtr - X[i,:]), axis = 1)

  25. min_index = np.argmin(distances) # 取最近图片的下标

  26. Ypred[i] = self.ytr[min_index] # 记录下label

  27.  
  28. return Ypred

  29.  
  30. nn = NearestNeighbor() # 初始化一个最近邻对象

  31. nn.train(Xtr_rows, Y_train) # 训练...其实就是读取训练集

  32. Yte_predict = nn.predict(Xte_rows) # 预测

  33. # 比对标准答案,计算准确率

  34. print 'accuracy: %f' % ( np.mean(Yte_predict == Y_test) )

最近邻的思想在CIFAR上得到的准确度为38.6%,我们知道10各类别,我们随机猜测的话准确率差不多是1/10=10%,所以说还是有识别效果的,但是显然这距离人的识别准确率(94%)实在是低太多了,不那么实用。

1.3 关于最近邻的距离准则

我们这里用的距离准则是l1距离,实际上除掉l1距离,我们还有很多其他的距离准则。

  • 比如说l2距离(也就是大家熟知的欧氏距离)的计算准则如下:

 

 

  • 比如余弦距离计算准则如下:

 

 

更多的距离准则可以参见scipy相关计算页面.

2. K最近邻分类器(K Nearest Neighbor Classifier)

这是对最近邻的思想的一个调整。其实我们在使用最近邻分类器分类,扫描CIFAR训练集的时候,会发现,有时候不一定距离最近的和当前图片是同类,但是最近的一些里有很多和当前图片是同类。所以我们自然而然想到,把最近邻扩展为最近的N个临近点,然后统计一下这些点的类目分布,取最多的那个类目作为自己的类别。

恩,这就是KNN的思想。

KNN其实是一种特别常用的分类算法。但是有个问题,我们的K值应该取多少呢。换句话说,我们找多少邻居来投票,比较靠谱呢?

3.1 交叉验证与参数选择

在现在的场景下,假如我们确定使用KNN来完成图片类别识别问题。我们发现有一些参数是肯定会影响最后的识别结果的,比如:

  • 距离的选择(l1,l2,cos等等)
  • 近邻个数K的取值。

每组参数下其实都能产生一个新的model,所以这可以视为一个模型选择/model selection问题。而对于模型选择问题,最常用的办法就是在交叉验证集上实验。

数据总量就那么多,如果我们在test data上做模型参数选择,又用它做效果评估,显然不是那么合理(因为我们的模型参数很有可能是在test data上过拟合的,不能很公正地评估结果)。所以我们通常会把训练数据分为两个部分,一大部分作为训练用,另外一部分就是所谓的cross validation数据集,用来进行模型参数选择的。比如说我们有50000训练图片,我们可以把它分为49000的训练集和1000的交叉验证集。

 
  1. # 假定已经有Xtr_rows, Ytr, Xte_rows, Yte了,其中Xtr_rows为50000*3072 矩阵

  2. Xval_rows = Xtr_rows[:1000, :] # 构建1000的交叉验证集

  3. Yval = Ytr[:1000]

  4. Xtr_rows = Xtr_rows[1000:, :] # 保留49000的训练集

  5. Ytr = Ytr[1000:]

  6.  
  7. # 设置一些k值,用于试验

  8. validation_accuracies = []

  9. for k in [1, 3, 5, 7, 10, 20, 50, 100]:

  10.  
  11. # 初始化对象

  12. nn = NearestNeighbor()

  13. nn.train(Xtr_rows, Ytr)

  14. # 修改一下predict函数,接受 k 作为参数

  15. Yval_predict = nn.predict(Xval_rows, k = k)

  16. acc = np.mean(Yval_predict == Yval)

  17. print 'accuracy: %f' % (acc,)

  18.  
  19. # 输出结果

  20. validation_accuracies.append((k, acc))

这里提一个在很多地方会看到的概念,叫做k-fold cross-validation,意思其实就是把原始数据分成k份,轮流使用其中k-1份作为训练数据,而剩余的1份作为交叉验证数据(因此其实对于k-fold cross-validation我们会得到k个accuracy)。以下是5-fold cross-validation的一个示例:

k-fold 交叉验证

以下是我们使用5-fold cross-validation,取不同的k值时,得到的accuracy曲线(补充一下,因为是5-fold cross-validation,所以在每个k值上有5个取值,我们取其均值作为此时的准确度)

5-fold 交叉验证

可以看出大概在k=7左右有最佳的准确度。

3.2 最近邻方法的优缺点

K最近邻的优点大家都看出来了,思路非常简单清晰,而且完全不需要训练…不过也正因为如此,最后的predict过程非常耗时,因为要和全部训练集中的图片比对一遍。

实际应用中,我们其实更加关心实施predict所消耗的时间,如果有一个图像识别app返回结果要半小时一小时,你一定第一时间把它卸了。我们反倒不那么在乎训练时长,训练时间稍微长一点没关系,只要最后应用的时候识别速度快效果好,就很赞。后面会提到的深度神经网络就是这样,深度神经网络解决图像问题时训练是一个相对耗时间的过程,但是识别的过程非常快。

另外,不得不多说一句的是,优化计算K最近邻时间问题,实际上依旧到现在都是一个非常热门的问题。Approximate Nearest Neighbor (ANN)算法是牺牲掉一小部分的准确度,而提高很大程度的速度,能比较快地找到近似的K最近邻,现在已经有很多这样的库,比如说FLANN.

最后,我们用一张图来说明一下,用图片像素级别的距离来实现图像类别识别,有其不足之处,我们用一个叫做t-SNE的技术把CIFAR-10的所有图片按两个维度平铺出来,靠得越近的图片表示其像素级别的距离越接近。然而我们瞄一眼,发现,其实靠得最近的并不一定是同类别的。

像素级别图像距离排列

其实观察一下,你就会发现,像素级别接近的图片,在整张图的颜色分布上,有很大的共性,然而在图像内容上,有时候也只能无奈地呵呵嗒,毕竟颜色分布相同的不同物体也是非常多的。

  • 1
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值