Video Segmentation by Non-Local Consensus Voting

Video Segmentation by Non-Local Consensus Voting

Alon Faktor and Michal Irani 

(BMVC 2014) 

Paper [ PDF

Abstract

We address the problem of Foreground/Background segmentation of "unconstrained" video. By "unconstrained" we mean that the moving objects and the background scene may be highly non-rigid (e.g., waves in the sea); the camera may undergo a complex motion with 3D parallax; moving objects may suffer from motion blur, large scale and illumination changes, etc. Most existing segmentation methods fail on such unconstrained videos, especially in the presence of highly non-rigid motion and low resolution. We propose a computationally efficient algorithm which is able to produce accurate results on a large variety of unconstrained videos. This is obtained by casting the video segmentation problem as a voting scheme on the graph of similar ('re-occurring') regions in the video sequence. We start from crude saliency votes at each pixel, and iteratively correct those votes by 'consensus voting' of re-occurring regions across the video sequence. The power of our consensus voting comes from the non-locality of the region re-occurrence, both in space and in time - enabling propagation of diverse and rich information across the entire video sequence. Qualitative and quantitative experiments indicate that our approach outperforms current state-of-the-art methods.

Code can be downloaded here

Example Videos: (Press on Video to watch it!)

                       
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值