HDU4910 (数论:Miller_Rabin+一个定理)

Problem about GCD

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 262    Accepted Submission(s): 31


Problem Description
Given integer m. Find multiplication of all 1<=a<=m such gcd(a, m)=1 (coprime with m) modulo m.
 

Input
Input contains multiple tests, one test per line.
Last line contains -1, it should be skipped.

[Technical Specification]
m <= 10^18
 

Output
For each test please output result. One case per line. Less than 160 test cases.
 

Sample Input
  
  
1
2
4
3 5
-1
 

Sample Output
  
  
0
1
3
2
4
 

Source



思路:
        首先有一个定理一个数m,对于所有小于m的数并与之互质的正整数的乘积x,x%m的结果不是1就是m-1,当m%2==0时,判断m/2;
        当结果为m-1时,需要满足:
                 1、m只有1个质因子,即m只能表达成m=p^k; 其中p为素数,p为次方
                 2、m%4!=0 (不包括4)
        由于m可以达到10^18次方,可以先用10^6以内的素数去试那个等式,如果没有找到,那么我们用Miller_Rabin算法测试m是不是素数。如果不是我们看m是不是完全平方           数,如果是并且m的平方根sqr是一个素数,那么结果为m-1。否则结果就是1。这里为什么用10^6内的素数去枚举呢?因为大于10^6的素数sqr,它的k不会超过2,所以可         以用平方判断。



代码:
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cmath>
#include<stdlib.h>
using namespace std;

const int MAXN=1000002;
int cnt;
bool p[MAXN];
int prim[78498];

typedef __int64 LL;
//****************************************************************
// Miller_Rabin 算法进行素数测试
//速度快,而且可以判断 <2^63的数
//****************************************************************
const int S=20;//随机算法判定次数,S越大,判错概率越小
 
 
LL mult_mod(LL a,LL b,LL mod) //(a*b)%c a,b,c<2^63
{
    a%=mod;
    b%=mod;
    LL ans=0;
    while(b)
    {
        if(b&1)
        {
            ans=ans+a;
            if(ans>=mod)
            ans=ans-mod;
        }
        a=a<<1;
        if(a>=mod) a=a-mod;
        b=b>>1;
    }
    return ans;
}
 
LL pow_mod(LL a,LL b,LL mod) // a^b%mod
{
    LL ans=1;
    a=a%mod;
    while(b)
    {
        if(b&1)
        {
            ans=mult_mod(ans,a,mod);
        }
        a=mult_mod(a,a,mod);
        b=b>>1;
    }
    return ans;
}
 
//以a为基,n-1=x*2^t      a^(n-1)=1(mod n)  验证n是不是合数
//一定是合数返回true,不一定返回false
 
bool check(LL a,LL n,LL x,LL t)
{
    LL ret=pow_mod(a,x,n);
    LL last=ret;
    for(int i=1;i<=t;i++)
    {
        ret=mult_mod(ret,ret,n);
        if(ret==1 && last!=1 && last!=n-1) return true;//合数
        last=ret;
    }
    if(ret!=1) return true;
    else return false;
}
 
// Miller_Rabin()算法素数判定
//是素数返回true.(可能是伪素数,但概率极小)
//合数返回false;
 
bool Miller_Rabin(LL n)
{
    if(n<2)return false;
    if(n==2) return true;
    if( (n&1)==0) return false;//偶数
    LL x=n-1;
    LL t=0;
    while( (x&1)==0 ) { x>>=1;t++;}
    for(int i=0;i<S;i++)
    {
        LL a=rand()%(n-1)+1;//rand()需要stdlib.h头文件
        if(check(a,n,x,t))
        return false;//合数
    }
    return true;
}


void get_Prime()
{
	cnt=0;
	memset(p,1,sizeof(p));
	int i,j;
	p[0]=p[1]=0;
	for(i=4;i<MAXN;i+=2)p[i]=0;
	for(i=3;i<MAXN;i+=2)
	{
		if(p[i])
		{
			prim[cnt++]=i;
			for(j=i+i;j<MAXN;j+=i)
				p[j]=0;
		}
	}
	//printf("%d\n",cnt);
}



bool solve(LL n)
{
	if(n%4==0) return false;
	if(n%2==0)n/=2;
	int i;
	for(i=0;i<cnt;i++)
	{
		LL x=n;
		while(x%prim[i]==0)
			x/=prim[i];
		if(x==1) return true;
			
	}
	
	if(Miller_Rabin(n)) return true;
	LL sqr=sqrt(n+0.0); 
	if(sqr*sqr==n && Miller_Rabin(sqr)) return true;
	else return false;
	
}

int main()
{

	LL m;
	get_Prime();
	while(scanf("%I64d",&m)!=EOF&&m!=-1)
	{
		if(solve(m) || m<6)printf("%I64d\n",m-1);
		else printf("1\n");
	}
	return 0;
}

                  














  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值