数的连续体 Markdown备份

你也许会想这么证明:假设有一个数能产生这个分割,那么这个数本身可以归为 A 1 A_1 A1这部分的最大数或 A 2 A_2 A2这部分的最小数。假设 a a a A 1 A_1 A1内最大的有理数,那么 a a a必然是正有理数,只要选定足够大的正整数 n n n就可以让 a + 1 n a+\dfrac {1} {n} a+n1变得比 a a a稍大一点点,那么我们很自然就会想:是不是存在正整数 n n n使得 ( a + 1 n ) 2 < 2 \left(a +\dfrac {1} {n}\right) ^{2} < 2 (a+n1)2<2呢?若存在,那么我们便说明了 A 1 A_1 A1内有比 a a a更大的有理数 a + 1 n a +\dfrac {1} {n} a+n1,从而说明 A 1 A_1 A1内无最大的有理数。因为 ( a + 1 n ) 2 = a 2 + 2 a n + 1 n 2 < a 2 + 2 a n + 1 n = a 2 + 1 n ( 2 a + 1 ) \left(a +\dfrac {1} {n}\right) ^{2}=a^{2}+\dfrac {2a} {n}+\dfrac {1} {n^{2}}<a^{2}+\dfrac {2a} {n}+\dfrac {1} {n} =a^{2}+\dfrac {1} {n}(2a+1) (a+n1)2=a2+n2a+n21<a2+n2a+n1=a2+n1(2a+1),如果能证明存在正整数 n n n使得 a 2 + 1 n ( 2 a + 1 ) < 2 a^{2}+\dfrac {1} {n}(2a+1)<2 a2+n1(2a+1)<2,那么 ( a + 1 n ) 2 < 2 \left(a +\dfrac {1} {n}\right) ^{2} < 2 (a+n1)2<2自然得证。对 a 2 + 1 n ( 2 a + 1 ) < 2 a^{2}+\dfrac {1} {n}(2a+1)<2 a2+n1(2a+1)<2稍作变形可得 1 n < 2 − a 2 2 a + 1 \dfrac {1} {n}<\dfrac {2-a^{2}}{2a+1} n1<2a+12a2 ,现在问题变成了是否存在正整数 n n n使得 1 n < 2 − a 2 2 a + 1 \dfrac {1} {n}<\dfrac {2-a^{2}}{2a+1} n1<2a+12a2 ,因为 a a a是正有理数且 a 2 < 2 a^{2}<2 a2<2,所以 2 − a 2 2 a + 1 \dfrac {2-a^{2}}{2a+1} 2a+12a2是正有理数,由有理数的阿基米德性质:“对于任何正有理数,总存在正整数 n n n使得 1 n \dfrac {1} {n} n1小于它”知存在这样的正整数 n n n,也就存在正整数 n n n使得 ( a + 1 n ) 2 < 2 \left(a +\dfrac {1} {n}\right) ^{2} < 2 (a+n1)2<2,所以 A 1 A_1 A1内无最大的有理数。用类似的方法也可以证明 A 2 A_2 A2内无最小的有理数。所以,有理数集不具备连续性。


The sequence x 1 , x 2 , x 3 , … x_{1}, x_{2}, x_{3}, \ldots x1,x2,x3, converges if and only if for every positive ϵ \epsilon ϵ there exists an N N N such that ∣ x n − x m ∣ ≤ ϵ \left|x_{n}-x_{m}\right| \leq \epsilon xnxmϵ for all n n n and m m m exceeding N N N.
In other words, a sequence converges if any two of its elements with sufficiently large indices differ by less than ϵ \epsilon ϵ from each other.

对于数轴上的任意一点 x x x至少有一个整数 c 0 c_0 c0使得 c 0 ≤ x ≤ c 0 + 1 , c_{0} \leq x \leq c_{0}+1 , c0xc0+1,换句话说 x x x属于闭区间 I 0 = [ c 0 , c 0 + 1 ] I_{0}=\left[c_{0}, c_{0}+1\right] I0=[c0,c0+1],再将 I 0 I_{0} I0十等分,则其间新产生的9个分点分别是 c 0 + 1 10 , c 0 + 2 10 , … , c 0 + 9 10 c_{0}+\frac{1}{10}, c_{0}+\frac{2}{10}, \ldots, c_{0}+\frac{9}{10} c0+101,c0+102,,c0+109 x x x至少会在这新产生的其中一个小区间上。换句话说,
x ∈ I 1 = [ c 0 + 1 10 c 1 , c 0 + 1 10 c 1 + 1 10 ] x\in I_{1}= [c_{0}+\frac{1}{10} c_{1}, c_{0}+\frac{1}{10} c_{1}+\frac{1}{10}] xI1=[c0+101c1,c0+101c1+101]其中 c 1 ∈ { 0 , 1 , 2 , … , 9 } c_{1}\in \left\{0,1 , 2, \ldots, 9\right\} c1{0,1,2,,9}。如果 x x x碰巧是上述9个分点之一的话,那么它可以属于以其为左端点的小区间,也可以属于以其为右端点的小区间,每逢这种情况,为了避免随之而来的不必要的复杂性,我们一律限定 x x x属于以其为左端点的小区间。
接着再将 I 1 I_{1} I1十等分,同样有
x ∈ I 2 = [ c 0 + 1 10 c 1 + 1 100 c 2 , c 0 + 1 10 c 1 + 1 100 c 2 + 1 100 ] x\in I_{2}= [c_{0}+\frac{1}{10} c_{1}+\frac{1}{100} c_{2}, c_{0}+\frac{1}{10} c_{1}+\frac{1}{100} c_{2}+\frac{1}{100}] xI2=[c0+101c1+1001c2,c0+101c1+1001c2+1001]。很显然,重复上述步骤到第 n n n次时有
x ∈ I n = [ c 0 + 1 10 c 1 + ⋯ + 1 1 0 n c n , c 0 + 1 10 c 1 + ⋯ + 1 1 0 n c n + 1 1 0 n ] x\in I_{n}=[ c_{0}+\frac{1}{10} c_{1}+\cdots+\frac{1}{10^{n}} c_{n}, c_{0}+\frac{1}{10} c_{1}+\cdots+\frac{1}{10^{n}} c_{n}+\frac{1}{10^{n}}] xIn=[c0+101c1++10n1cn,c0+101c1++10n1cn+10n1] c 1 , c 2 , … c_{1}, c_{2}, \ldots c1,c2, 均是 0 , 1 , 2 , … , 9 0,1 , 2, \ldots, 9 0,1,2,,9中的其中一个数,闭区间 I n I_{n} In的长度是 1 1 0 n \frac{1}{10^{n}} 10n1。如此无止境地构造下去便会得到无限多个区间
I 1 , I 2 , … , I n , ⋯ I_{1}, I_{2}, \ldots, I_{n}, \cdots I1,I2,,In,
后一个都包含在前一个内,各自的长度 1 0 − 1 , 1 0 − 2 , 1 0 − 3 , … 10^{-1}, 10^{-2}, 10^{-3}, \ldots 101,102,103,也在越来越靠近0。对于这无限多个 I n I_{n} In有两点需要说明的:(1) x x x在每个 I n I_{n} In上,毕竟这是我们构造各个 I n I_{n} In的要求;(2)除 x x x外没有其它的数始终包含在这无限多个 I n I_{n} In上。为了证明这一点,我们可以用反证法:假设除了 x x x外还有另外一个数 y y y在这无限多个 I n I_{n} In上,不妨设 y > x y>x y>x,就有 y − x < 1 1 0 n y-x<\frac{1}{10^{n}} yx<10n1对于一切正整数 n n n成立,这个不等式可以变换为 1 0 n ( y − x ) < 1 {10^{n}}(y-x)<1 10n(yx)<1,这与阿基米德性质是相悖的。用同样的方法可以证明 y < x y<x y<x时也有同样的结论。
所以无论是有理数还是无理数都有一系列的 I n I_{n} In与之唯一对应,值得留意的是这一系列的 I n I_{n} In的左右端点都是有理数,所以和无理数相关的加减乘除运算及其法则都可以据此在有理数的基础上推广过来。要知道为实数系建立严谨逻辑基础的核心问题是如何定义无理数及建立起与无理数相关的性质,所以到此我们就找到解决问题的突破口了,下面详述。为了叙述上的方便,可称上述这一系列 I n I_{n} In为有理数区间套(nested sequence of rational intervals1),记为 { I n } \left\{I_{n}\right\} {In}。如果把 x x x和它的有理数区间套的对应关系记为 x ∼ { [ a n , b n ] } x \sim\left\{\left[a_{n}, b_{n}\right]\right\} x{[an,bn]},同样地记 y ∼ { [ α n , β n ] } y \sim\left\{\left[\alpha_{n}, \beta_{n}\right]\right\} y{[αn,βn]},那么区间套 { [ a n + α n , b n + β n ] } \left\{\left[a_{n}+\alpha_{n}, b_{n}+\beta_{n}\right]\right\} {[an+αn,bn+βn]}显然与实数 x + y x+y x+y相对应, { [ a n − α n , b n − β n ] } \left\{\left[a_{n}-\alpha_{n}, b_{n}-\beta_{n}\right]\right\} {[anαn,bnβn]}与实数 x − y x-y xy相对应,因为上面我们已经用几何的方式定义了任意两个实数 x x x y y y的加减法,所以这里我们不能说这两个构造出来的区间套定义了 x x x y y y的加减法,但是我们可以通过对应的区间套来感知加减法的结果在数量上的大小。我们还没有定义 x x x y y y的乘除法,所以可用与上述类似的方法构造并定义出 x ⋅ y x\cdot y xy x y \frac{x}{y} yx。如我们所知道的:对于两个有理数 a a a b b b c c c,如果 a < b a<b a<b c < 0 c<0 c<0,那么 a c > b c ac>bc ac>bc,正是因为此等原因,对于 x x x y y y的乘法的定义,我们需要就 y y y的正负在形式上分开定义 x ⋅ y x\cdot y xy,但本质思想是不变的。当 y > 0 y>0 y>0 { [ a n α n , b n β n ] } \left\{\left[a_{n} \alpha_{n}, b_{n} \beta_{n}\right]\right\} {[anαn,bnβn]}就可以被视为 x ⋅ y x\cdot y xy的结果。 y < 0 y<0 y<0 y = 0 y=0 y=0时用来定义 x ⋅ y x\cdot y xy的区间套也不难得出,此处不再敖述。应用类似的方法,我们可以接着定义 x y \frac{x}{y} yx的结果。不难发现这种定义方式是基于有理数的乘除法的,上述提到的Cantor和Dedekind的定义方法也是如此,这里想要说明的是:因为无理数的加减乘除法是我们早已有的东西,是本文的基础之一,所以这里定义出来的乘除法更应该看成是当 x x x y y y至少有一个是无理数时的乘除法定义,虽然当 x x x y y y都是有理数时其乘除法的结果也可以通过上述方法定义,但这种看法没有什么意义。在有了实数的加减乘除法定义后,我们可以进一步证明有理数的一些运算性质在实数(尤其是无理数参与时)内也仍然成立,此处以“有理数的乘法交换律在实数范围内仍然成立”为代表进行说明。对于实数 x , y x, y x,y,实数乘法交换律可以表述为 x ⋅ y = y ⋅ x x \cdot y=y \cdot x xy=yx,该性质在有理数内是成立的,为了证明它在实数范围内也成立,我们的方法是证明代表等式左边的有理数区间套和右边的区间套是等同的。在此以 y > 0 y>0 y>0为例进行说明( y < 0 y<0 y<0 y = 0 y=0 y=0的情况也可以用类似于如下的方法说明),代表等式左边结果的区间套是 { [ a n α n , b n β n ] } \left\{\left[a_{n} \alpha_{n}, b_{n} \beta_{n}\right]\right\} {[anαn,bnβn]},代表等式右边结果的区间套是 { [ α n a n , β n b n ] } \left\{\left[\alpha_{n}a_{n}, \beta_{n}b_{n}\right]\right\} {[αnan,βnbn]},因为 a n a_{n} an α n \alpha_{n} αn都是有理数,根据有理数乘法交换律有 a n α n = α n a n a_{n} \alpha_{n}=\alpha_{n}a_{n} anαn=αnan b n β n = β n b n b_{n} \beta_{n}=\beta_{n}b_{n} bnβn=βnbn,所以左右两边的区间套是等同的,对应的也就都是同一个数,故此我们就把有理数的乘法交换律推广到了实数范围内,有用类似的方法还可以说明有理数的乘法分配律在实数范围内仍然成立。

可简而言之为:有且仅有一个 x x x在这无限多个 I n I_{n} In上。也可以说左端点数列逼近 x x x

无理数边的矩形面积


  1. Richard Courant, Fritz John, Introduction to Calculus and Analysis Volume I, Reprint of the 1989 edition, P90 ↩︎

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
SQLAlchemy 是一个 SQL 工具包和对象关系映射(ORM)库,用于 Python 编程语言。它提供了一个高级的 SQL 工具和对象关系映射工具,允许开发者以 Python 类和对象的形式操作据库,而无需编写大量的 SQL 语句。SQLAlchemy 建立在 DBAPI 之上,支持多种据库后端,如 SQLite, MySQL, PostgreSQL 等。 SQLAlchemy 的核心功能: 对象关系映射(ORM): SQLAlchemy 允许开发者使用 Python 类来表示据库表,使用类的实例表示表中的行。 开发者可以定义类之间的关系(如一对多、多对多),SQLAlchemy 会自动处理这些关系在据库中的映射。 通过 ORM,开发者可以像操作 Python 对象一样操作据库,这大大简化了据库操作的复杂性。 表达式语言: SQLAlchemy 提供了一个丰富的 SQL 表达式语言,允许开发者以 Python 表达式的方式编写复杂的 SQL 查询。 表达式语言提供了对 SQL 语句的灵活控制,同时保持了代码的可读性和可维护性。 据库引擎和连接池: SQLAlchemy 支持多种据库后端,并且为每种后端提供了对应的据库引擎。 它还提供了连接池管理功能,以优化据库连接的创建、使用和释放。 会话管理: SQLAlchemy 使用会话(Session)来管理对象的持久化状态。 会话提供了一个工作单元(unit of work)和身份映射(identity map)的概念,使得对象的状态管理和查询更加高效。 事件系统: SQLAlchemy 提供了一个事件系统,允许开发者在 ORM 的各个生命周期阶段插入自定义的钩子函。 这使得开发者可以在对象加载、修改、删除等操作时执行额外的逻辑。
SQLAlchemy 是一个 SQL 工具包和对象关系映射(ORM)库,用于 Python 编程语言。它提供了一个高级的 SQL 工具和对象关系映射工具,允许开发者以 Python 类和对象的形式操作据库,而无需编写大量的 SQL 语句。SQLAlchemy 建立在 DBAPI 之上,支持多种据库后端,如 SQLite, MySQL, PostgreSQL 等。 SQLAlchemy 的核心功能: 对象关系映射(ORM): SQLAlchemy 允许开发者使用 Python 类来表示据库表,使用类的实例表示表中的行。 开发者可以定义类之间的关系(如一对多、多对多),SQLAlchemy 会自动处理这些关系在据库中的映射。 通过 ORM,开发者可以像操作 Python 对象一样操作据库,这大大简化了据库操作的复杂性。 表达式语言: SQLAlchemy 提供了一个丰富的 SQL 表达式语言,允许开发者以 Python 表达式的方式编写复杂的 SQL 查询。 表达式语言提供了对 SQL 语句的灵活控制,同时保持了代码的可读性和可维护性。 据库引擎和连接池: SQLAlchemy 支持多种据库后端,并且为每种后端提供了对应的据库引擎。 它还提供了连接池管理功能,以优化据库连接的创建、使用和释放。 会话管理: SQLAlchemy 使用会话(Session)来管理对象的持久化状态。 会话提供了一个工作单元(unit of work)和身份映射(identity map)的概念,使得对象的状态管理和查询更加高效。 事件系统: SQLAlchemy 提供了一个事件系统,允许开发者在 ORM 的各个生命周期阶段插入自定义的钩子函。 这使得开发者可以在对象加载、修改、删除等操作时执行额外的逻辑。
GeoPandas是一个开源的Python库,旨在简化地理空间据的处理和分析。它结合了Pandas和Shapely的能力,为Python用户提供了一个强大而灵活的工具来处理地理空间据。以下是关于GeoPandas的详细介绍: 一、GeoPandas的基本概念 1. 定义 GeoPandas是建立在Pandas和Shapely之上的一个Python库,用于处理和分析地理空间据。 它扩展了Pandas的DataFrame和Series据结构,允许在其中存储和操作地理空间几何图形。 2. 核心据结构 GeoDataFrame:GeoPandas的核心据结构,是Pandas DataFrame的扩展。它包含一个或多个列,其中至少一列是几何列(geometry column),用于存储地理空间几何图形(如点、线、多边形等)。 GeoSeries:GeoPandas中的另一个重要据结构,类似于Pandas的Series,但用于存储几何图形序列。 二、GeoPandas的功能特性 1. 读取和写入多种地理空间据格式 GeoPandas支持读取和写入多种常见的地理空间据格式,包括Shapefile、GeoJSON、PostGIS、KML等。这使得用户可以轻松地从各种据源中加载地理空间据,并将处理后的据保存为所需的格式。 2. 地理空间几何图形的创建、编辑和分析 GeoPandas允许用户创建、编辑和分析地理空间几何图形,包括点、线、多边形等。它提供了丰富的空间操作函,如缓冲区分析、交集、并集、差集等,使得用户可以方便地进行地理空间据分析。 3. 据可视化 GeoPandas内置了据可视化功能,可以绘制地理空间据的地图。用户可以使用matplotlib等库来进一步定制地图的样式和布局。 4. 空间连接和空间索引 GeoPandas支持空间连接操作,可以将两个GeoDataFrame按照空间关系(如相交、包含等)进行连接。此外,它还支持空间索引,可以提高地理空间据查询的效率。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值