【AIGC】COT思维链:让AI学会拆解问题,像人一样思考

COT思维链

  • 引言
  • 理解实践
    • 存疑例子
    • COT解决
  • 内置COT
  • COT的优势
  • COT的未来展望:
  • 结语

引言

在人工智能领域,我们一直在追求让机器像人类一样思考。然而,即使是最先进的AI,也常常被诟病缺乏“常识”,难以理解复杂问题,更不用说像人类一样进行逻辑推理和解决问题了。最经常的表现就是遇到不会的地方,或者一些人一眼能看出来的地方AI在那里胡扯

为了解决这个问题,一种名为“思维链(Chain of Thought, COT)”的技术应运而生。COT的核心思想是:将复杂问题分解成一系列简单的子问题,并逐步推理出最终答案。 这就像人类在解决问题时,会先将问题拆解成一个个小步骤,然后一步步推理,最终得出结论。​
在这里插入图片描述

理解实践

存疑例子

为了理解COT我们先来看个例子。经典的数strawberry里面的r有几个

from langchain_openai import ChatOpenAI
from langchain.chains import LLMChain
from langchain.prompts import PromptTemplate

# 模型
model = ChatOpenAI(
    model='deepseek-chat', 
    openai_api_key='sk-xxx',
    openai_api_base='https://api.deepseek.com',
    max_tokens=4096
)
# 定义一个简单的提示模板
prompt_template = PromptTemplate(
    input_variables=["user_input"],
    template="用户: {user_input}\nAI:"
)
# 创建一个链,将提示模板与模型连接起来
chain = LLMChain(llm=model, prompt=prompt_template)

# 手动输入一个值并发送给模型
user_input = "strawberry里面有几个r"
# 发送消息给模型并获取响应
response = chain.run(user_input=user_input)
print(f"\n\nAI: {
     response
评论 169
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值