深度学习
JackYu庾
机器学习,计算机视觉,Geek。
展开
-
Theano下用CNN(卷积神经网络)做车牌中文字符OCR
Theano下用CNN(卷积神经网络)做车牌中文字符OCR原创 2016-04-06 18:30:37 · 18996 阅读 · 3 评论 -
跑 NeuralStyle (使用CNN进行的画风迁移实验)
跑NeuralStyle教程(使用CNN的画风迁移实验)原创 2016-03-27 12:02:08 · 12069 阅读 · 2 评论 -
使用Python将图像数据写入到MNIST格式以方便各个DL框架之间的训练
最近使用各种不同的深度学习框架测试他们之间的性能和好坏,由于每个框架上手时间都比较短,没有足够的时间了解他们载入自定义格式数据的方法。由于深度学习界的Hello World 几乎就是使用CNN 训练 Mnist 手写数字。所以各个框架都几乎支持可以直接读取Mnist文件。所以把训练直接写入到MNIST格式,是一种很好的偷懒方法。不过如果不修改数据接口只能读取灰度图像。我们先来看一下MNIST的数据格原创 2016-06-07 03:26:40 · 4704 阅读 · 5 评论 -
车牌识别中的不分割字符的端到端(End-to-End)识别
传统的车牌识别过程是往往是这样的车牌定位->车牌判断->车牌字符的分割->车牌字符的识别这种方法有个好处就是,仅仅需要较少的字符样本即可用于分类器的训练。在光照,相机条件好的情况下也能取得较好的效果。现在大多数商业车牌识别软件采用的也是这种方法。但是在某些恶劣的自然情况下,车牌字符的分割和识别变得尤其的困难,传统的方法并不能取得很好的结果。这时候我们就能考虑下是否能整体一起识别。当然我们注意到车牌原创 2016-08-10 17:05:05 · 32864 阅读 · 17 评论 -
使用人脸中的方法来进行车牌定位和精定位
使用adaboost+LBP和CNN regression来定位车牌过去一段时间我尝试着简单把人脸检测和对齐中的套路用到车牌识别上,也做了一些相关的实验。大概找了 600 多张 车牌照片。在进行crop后使用adaboost+lbp特征 训练了一个级联分类检测器。之后测试recall比EasyPR的cmser定位还要好。而且检测速度比cmser快5-6倍。在车牌小角度+-15倾斜都能被较好的定位。主要的原创 2017-05-14 14:40:02 · 9858 阅读 · 11 评论 -
HyperLPR - 一个基于深度学习的支持多种车牌的中文开源车牌识别框架
介绍HyperLPR是一个使用深度学习针对对中文车牌识别的实现,与较为流行的开源的EasyPR相比,它的检测速度和鲁棒性和多场景的适应性都要好于目前开源的EasyPR,HyperLPR可以识别多种中文车牌包括白牌,新能源车牌,使馆车牌,教练车牌,武警车牌等。 Github地址:https://github.com/zeusees/HyperLPR特性基于端到端sequence模型,无需进行字符分原创 2017-11-25 01:09:35 · 10221 阅读 · 4 评论 -
HyperLPR车牌识别技术算法之车牌精定位
关于HyperLPRHyperLPR是一个使用深度学习针对对中文车牌识别的实现,与较为流行的开源的EasyPR相比,它的检测速度和鲁棒性和多场景的适应性都要好于目前开源的EasyPR,HyperLPR可以识别多种中文车牌包括白牌,新能源车牌,使馆车牌,教练车牌,武警车牌等。 Github地址:https://github.com/zeusees/HyperLPR车牌的精定位我们在训练完casca原创 2017-12-03 23:56:07 · 22004 阅读 · 24 评论 -
HyperLPR车牌识别技术算法之车牌粗定位与训练
关于HyperLPRHyperLPR是一个使用深度学习针对对中文车牌识别的实现,与较为流行的开源的EasyPR相比,它的检测速度和鲁棒性和多场景的适应性都要好于目前开源的EasyPR,HyperLPR可以识别多种中文车牌包括白牌,新能源车牌,使馆车牌,教练车牌,武警车牌等。 Github地址:https://github.com/zeusees/HyperLPR前言车牌识别是使用OCR来识别车牌原创 2017-12-04 00:27:31 · 32000 阅读 · 13 评论 -
MTCNN优化和另类用法
MTCNN优化和另类用法MTCNN是目前应用十分广泛的基于级联的特定目标检测器,也是少数能在传统硬件上落地的检测器,当然其优势不光光仅仅用于人脸检测这个任务。在人脸这个任务上,在少数人脸<5个人脸的情况下。其效能是第一梯队的水准。而且有着极大的优化空间(加上一些trick可以轻易的优化到极快的速度移动端 minSize60 60fps 1080p mt.)。而且其Alignment的准...原创 2018-11-14 22:48:51 · 13768 阅读 · 16 评论