一、绪论
1.1 决策树算法的背景介绍
1.2 研究决策树算法的意义
二、决策树算法原理
2.1 决策树的基本概念
2.2 决策树构建的基本思路
2.2 决策树的构建过程
2.3 决策树的剪枝策略
三、决策树算法的优缺点
3.1 决策树算法的优势
3.2 决策树算法的局限性
3.3 决策树算法的改进方向
四、决策树算法案例实现
五、决策树算法在实际应用中的案例分析
5.1 金融领域中的决策树应用
5.2 医疗领域中的决策树应用
一、绪论
1.1 决策树算法的背景介绍
决策树(Decision Tree)是在已知各种情况发生概率的基础上,通过构成决策树来求取净现值的期望值大于等于零的概率,评价项目风险,判断其可行性的决策分析方法,是直观运用概率分析的一种图解法。由于这种决策分支画成图形很像一棵树的枝干,故称决策树。
简单点说,决策树,就是帮助我们做出决策的树,如下图,图中红线表示给定一个样例(表中数据)决策树的决策过程:
决策树的主要思想是根据已知数据构建一棵树,通过对待分类或回归的样本进行逐步的特征判断,最终将其分类或回归至叶子节点。
一颗决策树包含一个根节点、若干个内部结点和若干个叶结点;叶结点对应于决策结果,其他每个结点则对应于一个属性测试;每个结点包含的样本集合根据属性测试的结果被划分到子结点中;根结点包含样本全集,从根结点到每个叶子结点的路径对应了一个判定测试序列。
决策树方法最早产生于上世纪60年代,最早的的决策树算法是由Hunt等人于1966年提出,Hunt算法是许多决策树算法的基础,包括ID3、C4.5和CART等。
到70年代末。由J Ross Quinlan提出了ID3算法,此算法的目的在于减少树的深度。但是忽略了叶子数目的研究。C4.5算法在ID3算法的基础上进行了改进,对于预测变量的缺值处理、剪枝技术、派生规则等方面作了较大改进,既适合于分类问题,又适合于回归问题。
1.2 研究决策树算法的意义
决策树列出了决策问题的全部可行方案和可能出现的各种自然状态,以及各可行方法在各种不同状态下的期望值。能直观地显示整个决策问题在时间和决策顺序上不同阶段的决策过程。在应用于复杂的多阶段决策时,阶段明显,层次清楚,便于决策机构集体研究,可以周密地思考各种因素,有利于作出正确的决策。
决策树作为一种经典的机器学习方法,在数据科学实践中具有显著优势。它不仅提供了一种直观的决策流程,便于解释和理解,还能够处理各种类型的数据特征,对缺失值具有一定的鲁棒性。尽管其易受过拟合影响,但通过合理设置参数、实施剪枝策略以及采用集成方法,可以在保持模型解释性的同时,有效提升模型的泛化性能。在实际应用中,决策树广泛应用于金融风险评估、医疗诊断、市场营销、图像识别等多个领域,是数据科学家工具箱中的重要组件。
二、决策树算法原理
2.1 决策树的基本概念
决策树是一种基本的分类与回归方法。决策树模型呈树形结构,在分类问题中,表示基于特征对实例进行分类的过程。它可以认为是if-then规则的集合,也可以认为是定义在特征空间与类空间上的条件概率分布。
根据处理数据类型的不同,决策树又为分类决策树与回归决策树。
决策树学习通常包括3个步骤:特征选择、决策树的生成和决策树的修剪。