最大子段和问题,最大子矩阵和问题,最大m子段和问题

1、最大子段和问题

问题定义:对于给定序列a1,a2,a3……an,寻找它的某个连续子段,使得其和最大。如( -2,11,-4,13,-5,-2 )最大子段是{ 11,-4,13 }其和为20。

(1)枚举法求解

枚举法思路如下:

以a[0]开始: {a[0]}, {a[0],a[1]},{a[0],a[1],a[2]}……{a[0],a[1],……a[n]}共n个

以a[1]开始: {a[1]}, {a[1],a[2]},{a[1],a[2],a[3]}……{a[1],a[2],……a[n]}共n-1个

……

以a[n]开始:{a[n]}共1个

一共(n+1)*n/2个连续子段,使用枚举,那么应该可以得到以下算法:
具体代码如下:

//3d4-1 最大子段和问题的简单算法
#include "stdafx.h"
#include <iostream> 
using namespace std; 

int MaxSum(int n,int *a,int& besti,int& bestj);

int main()
{
	int a[] = {-2,11,-4,13,-5,-2};

	for(int i=0; i<6; i++)
	{
		cout<<a[i]<<" ";
	}

	int besti,bestj;

	cout<<endl;
	cout<<"数组a的最大连续子段和为:a["<<besti<<":"<<bestj<<"]:"<<MaxSum(6,a,besti,bestj)<<endl;

	return 0;
}

int MaxSum(int n,int *a,int& besti,int& bestj)
{	
	int sum = 0;
	for(int i=0; i<n; i++)//控制求和起始项
	{
		for(int j=i; j<n; j++)//控制求和结束项
		{
			int thissum = 0;
			for(int k=i; k<=j; k++)//求和
			{
				thissum += a[k];
			}

			if(thissum>sum)//求最大子段和
			{
				sum = thissum;
				besti = i;
				bestj = j;
			}
		}
	}
	return sum;
}

从这个算法的三个for循环可以看出,它所需要的计算时间是O(n^3)。事实上,如果注意到,则可将算法中的最后一个for循环省去,避免重复计算,从而使算法得以改进。改进后的代码如下:

//3d4-2 最大子段和问题的避免重复的简单算法
#include "stdafx.h"
#include <iostream> 
using namespace std; 

int MaxSum(int n,int *a,int& besti,int& bestj);

int main()
{
	int a[] = {-2,11,-4,13,-5,-2};

	for(int i=0; i<6; i++)
	{
		cout<<a[i]<<" ";
	}

	int besti,bestj;

	cout<<endl;
	cout<<"数组a的最大连续子段和为:a["<<besti<<":"<<bestj<<"]:"<<MaxSum(6,a,besti,bestj)<<endl;

	return 0;
}

int MaxSum(int n,int *a,int& besti,int& bestj)
{	
	int sum = 0;
	for(int i=0; i<n; i++)//控制求和起始项
	{
		int thissum = 0;
		for(int j=i; j<=n; j++)//控制求和结束项
		{
			thissum += a[j];//求和
			if(thissum>sum)
			{
				sum = thissum;
				besti = i;
				bestj = j;
			}
			
		}
	}
	return sum;
}

(2)分治法求解

分治法思路如下:

将序列a[1:n]分成长度相等的两段a[1:n/2]和a[n/2+1:n],分别求出这两段的最大字段和,则a[1:n]的最大子段和有三中情形:

[1]、a[1:n]的最大子段和与a[1:n/2]的最大子段和相同;

[2]、a[1:n]的最大子段和与a[n/2+1:n]的最大子段和相同;

[3]、a[1:n]的最大字段和为,且1<=i<=n/2,n/2+1<=j<=n。

可用递归方法求得情形[1],[2]。对于情形[3],可以看出a[n/2]与a[n/2+1]在最优子序列中。因此可以在a[1:n/2]中计算出,并在a[n/2+1:n]中计算出。则s1+s2即为出现情形[3]时的最优值。

具体代码如下: 

//3d4-1 最大子段和问题的分治算法
#include "stdafx.h"
#include <iostream> 
using namespace std; 

int MaxSubSum(int *a,int left,int right);
int MaxSum(int n,int *a);

int main()
{
	int a[] = {-2,11,-4,13,-5,-2};

	for(int i=0; i<6; i++)
	{
		cout<<a[i]<<" ";
	}

	cout<<endl;
	cout<<"数组a的最大连续子段和为:"<<MaxSum(6,a)<<endl;

	return 0;
}

int MaxSubSum(int *a,int left,int right)
{	
	int sum = 0;
	if(left == right)
	{
		sum = a[left]>0?a[left]:0;
	}
	else
	{
		int center = (left+right)/2;
		int leftsum = MaxSubSum(a,left,center);
		int rightsum = MaxSubSum(a,center+1,right);

		int s1 = 0;
		int lefts = 0;
		for(int i=center; i>=left;i--)
		{
			lefts += a[i];
			if(lefts>s1)
			{
				s1=lefts;
			}
		}

		int s2 = 0;
		int rights = 0;
		for(int i=center+1; i<=right;i++)
		{
			rights += a[i];
			if(rights>s2)
			{
				s2=rights;
			}
		}
		sum = s1+s2;
		if(sum<leftsum)
		{
			sum = leftsum;
		}
		if(sum<rightsum)
		{
			sum = rightsum;
		}

	}
	return sum;
}

int MaxSum(int n,int *a)
{
	return MaxSubSum(a,0,n-1);
}

算法所需的计算时间T(n)满足一下递归式:

解此递归方程可知:T(n)=O(nlogn)。

(3)动态规划算法求解

算法思路如下:

,则所求的最大子段和为:

由b[j]的定义知,当b[j-1]>0时,b[j]=b[j-1]+a[j],否则b[j]=a[j]。由此可得b[j]的动态规划递推式如下:

b[j]=max{b[j-1]+a[j],a[j]},1<=j<=n。

具体代码如下: 

//3d4-1 最大子段和问题的动态规划算法
#include "stdafx.h"
#include <iostream> 
using namespace std; 

int MaxSum(int n,int *a);

int main()
{
	int a[] = {-2,11,-4,13,-5,-2};

	for(int i=0; i<6; i++)
	{
		cout<<a[i]<<" ";
	}

	cout<<endl;
	cout<<"数组a的最大连续子段和为:"<<MaxSum(6,a)<<endl;

	return 0;
}

int MaxSum(int n,int *a)
{
	int sum=0,b=0;
	for(int i=1; i<=n; i++)
	{
		if(b>0)
		{
			b+=a[i];
		}
		else
		{
			b=a[i];
		}
		if(b>sum)
		{
			sum = b;
		}
	}
	return sum;
}

上述算法的时间复杂度和空间复杂度均为O(n)。

2、最大子矩阵和问题
(1)问题描述:给定一个m行n列的整数矩阵A,试求A的一个子矩阵,时期各元素之和为最大。

(2)问题分析:

用二维数组a[1:m][1:n]表示给定的m行n列的整数矩阵。子数组a[i1:i2][j1:j2]表示左上角和右下角行列坐标分别为(i1,j1)和(i2,j2)的子矩阵,其各元素之和记为:

最大子矩阵问题的最优值为。如果用直接枚举的方法解最大子矩阵和问题,需要O(m^2n^2)时间。注意到,式中,,设,则

容易看出,这正是一维情形的最大子段和问题。因此,借助最大子段和问题的动态规划算法MaxSum,可设计出最大子矩阵和动态规划算法如下:

 

//3d4-5 最大子矩阵之和问题
#include "stdafx.h"
#include <iostream> 
using namespace std; 

const int M=4;
const int N=3;

int MaxSum(int n,int *a);
int MaxSum2(int m,int n,int a[M][N]);

int main()
{
	int a[][N] = {{4,-2,9},{-1,3,8},{-6,7,6},{0,9,-5}};

	for(int i=0; i<M; i++)
	{
		for(int j=0; j<N; j++)
		{
			cout<<a[i][j]<<" ";
		}
		cout<<endl;
	}

	cout<<endl;
	cout<<"数组a的最大连续子段和为:"<<MaxSum2(M,N,a)<<endl;

	return 0;
}

int MaxSum2(int m,int n,int a[M][N])
{
	int sum = 0;
	int *b = new int[n+1];
	for(int i=0; i<m; i++)//枚举行
	{
		for(int k=0; k<n;k++)
		{
			b[k]=0;
		}

		for(int j=i;j<m;j++)//枚举初始行i,结束行j
		{
			for(int k=0; k<n; k++)
			{
				b[k] += a[j][k];//b[k]为纵向列之和
				int max = MaxSum(n,b);
				if(max>sum)
				{
					sum = max;
				}
			}
		}
	}
	return sum;
}

int MaxSum(int n,int *a)
{
	int sum=0,b=0;
	for(int i=1; i<=n; i++)
	{
		if(b>0)
		{
			b+=a[i];
		}
		else
		{
			b=a[i];
		}
		if(b>sum)
		{
			sum = b;
		}
	}
	return sum;
}
以上代码MaxSum2方法的执行过程可用下图表示:


3、最大m子段和问题

(1)问题描述:给定由n个整数(可能为负数)组成的序列a1,a2,a3……an,以及一个正整数m,要求确定此序列的m个不相交子段的总和达到最大。最大子段和问题是最大m字段和问题当m=1时的特殊情形。

(2)问题分析:设b(i,j)表示数组a的前j项中i个子段和的最大值,且第i个子段含a[j](1<=i<=m,i<=j<=n),则所求的最优值显然为。与最大子段问题相似,计算b(i,j)的递归式为:

其中,表示第i个子段含a[j-1],而项表示第i个子段仅含a[j]。初始时,b(0,j)=0,(1<=j<=n);b(i,0)=0,(1<=i<=m)。

具体代码如下:

//3d4-6 最大m子段问题
#include "stdafx.h"
#include <iostream> 
using namespace std; 

int MaxSum(int m,int n,int *a);

int main()
{
	int a[] = {0,2,3,-7,6,4,-5};//数组脚标从1开始
	for(int i=1; i<=6; i++)
	{
		cout<<a[i]<<" ";
	}

	cout<<endl;
	cout<<"数组a的最大连续子段和为:"<<MaxSum(3,6,a)<<endl;
	}

int MaxSum(int m,int n,int *a)
{
	if(n<m || m<1)
		return 0;
	int **b = new int *[m+1];

	for(int i=0; i<=m; i++)
	{
		b[i] = new int[n+1];
	}

	for(int i=0; i<=m; i++)
	{
		b[i][0] = 0;
	}

	for(int j=1;j<=n; j++)
	{
		b[0][j] = 0;
	}

	//枚举子段数目,从1开始,迭代到m,递推出b[i][j]的值
	for(int i=1; i<=m; i++)
	{
		//n-m+i限制避免多余运算,当i=m时,j最大为n,可据此递推所有情形
		for(int j=i; j<=n-m+i; j++)
		{
			if(j>i)
			{
				b[i][j] = b[i][j-1] + a[j];//代表a[j]同a[j-1]一起,都在最后一子段中
				for(int k=i-1; k<j; k++)
				{
					if(b[i][j]<b[i-1][k]+a[j])
						b[i][j] = b[i-1][k]+a[j];//代表最后一子段仅包含a[j]
				}
			}
			else
			{
				b[i][j] = b[i-1][j-1]+a[j];//当i=j时,每一项为一子段
			}
		}
	}
	int sum = 0;
	for(int j=m; j<=n; j++)
	{
		if(sum<b[m][j])
		{
			sum = b[m][j];
		}
	}
	return sum;
}

上述算法的时间复杂度为O(mn^2),空间复杂度为O(mn)。其实,上述算法中,计算b[i][j]时,只用到了数组b的第i-1行和第i行的值。因而,算法中只要存储数组b的当前行,不必存储整个数组。另一方面,的值可以在计算i-1行时预先计算并保存起来。计算第i行的值时不必重新计算,节省了计算时间和空间。因此,算法可继续改进如下: 

//3d4-7 最大m子段问题
#include "stdafx.h"
#include <iostream> 
using namespace std; 

int MaxSum(int m,int n,int *a);

int main()
{
	int a[] = {0,2,3,-7,6,4,-5};//数组脚标从1开始
	for(int i=1; i<=6; i++)
	{
		cout<<a[i]<<" ";
	}

	cout<<endl;
	cout<<"数组a的最大连续子段和为:"<<MaxSum(3,6,a)<<endl;
	}

int MaxSum(int m,int n,int *a)
{
	if(n<m || m<1)
		return 0;
	int *b = new int[n+1];
	int *c = new int[n+1];

	b[0] = 0;//b数组记录第i行的最大i子段和
	c[1] = 0;//c数组记录第i-1行的最大i-1子段和

	for(int i=1; i<=m; i++)
	{
		b[i] = b[i-1] + a[i];
		c[i-1] = b[i];
		int max = b[i];

		//n-m+i限制避免多余运算,当i=m时,j最大为n,可据此递推所有情形
		for(int j=i+1; j<=i+n-m;j++)
		{
			b[j] = b[j-1]>c[j-1]?b[j-1]+a[j]:c[j-1]+a[j];
			c[j-1] = max;//预先保存第j-1行的最大j-1子段和

			if(max<b[j])
			{
				max = b[j];
			}
		}
		c[i+n-m] = max;
	}

	int sum = 0;
	for(int j=m; j<=n; j++)
	{
		if(sum<b[j])
		{
			sum = b[j];
		}
	}
	return sum;
}

上述算法时间复杂度为O(m(n-m)),空间复杂度为O(n)。当m或n-m为常数时,时间复杂度和空间复杂度均为O(n)。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值