自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(107)
  • 资源 (12)
  • 收藏
  • 关注

原创 基于YOLOv5、FaceNet与KNN的人脸识别系统

【代码】基于YOLOv5、FaceNet与KNN的人脸识别系统。

2025-02-24 18:04:04 793

原创 基于YOLOv5的人脸检测实现

以下是基于YOLOv5实现人脸检测的详细步骤及代码实现,包含从数据准备到模型部署的全流程: 一、环境配置。3. 混合精度训练:在训练时添加`--half`参数启用FP16。1. 多线程预处理:使用生产者-消费者模式分离数据加载与推理。4. 模型蒸馏:使用大模型指导小模型训练提升小模型精度。1. 在models/yolo.py中添加HAM模块。2. 批处理推理:累积多帧后批量处理提升GPU利用率。2. 配置文件yolov5s-face.yaml。1. 数据配置文件face.yaml。3. 动态数据增强实现。

2025-02-24 17:09:26 276

原创 ubuntu离线安装ollama

如果发现有缺失的软件包,可以在有网络连接的情况下下载这些_missing_packages.deb文件,放在与Ollama相同的目录下。如果在安装过程中出现依赖性错误,可能出现`dpkg`未满足的依赖项。此时,需要再次检查遗漏的软件包,并下载其对应的.deb文件进行安装。在安装前,需要确保系统已满足所有依赖项。通过以上步骤,在Ubuntu离线环境下成功安装并运行Ollama是完全可行的。遇到依赖问题时,可能需要按顺序安装,确保较低级别的软件包先被安装。根据列出的依赖项,逐一检查并下载相应的.deb文件。

2025-02-21 14:13:38 1383

原创 通信系统中物理层与网络层联系与区别

在通信系统中,物理层和网络层**是OSI(开放系统互连)模型中的两个重要层次,分别位于协议栈的最底层和第三层。它们在功能、职责和实现方式上有显著的区别,但同时也在某些方面存在联系。尽管物理层和网络层在功能上有明显区别,但它们在通信系统中是紧密协作的,共同确保数据的可靠传输。在实际通信系统中,物理层和网络层的紧密协作是实现高效、可靠通信的关键。(1)物理层(Physical Layer)(2)网络层(Network Layer)3. 物理层与网络层的联系。(2)物联网(IoT)(1)数据传输的协作。

2025-02-21 09:22:05 825

原创 图像分类综述

图像分类是计算机视觉领域的核心任务之一,随着深度学习技术的发展,图像分类的准确率和效率得到了显著提升。未来,随着自监督学习、轻量化模型、多模态融合等技术的发展,图像分类将在更多领域得到广泛应用,并进一步提升其性能和可解释性。图像分类(Image Classification)是计算机视觉领域的基础任务之一,其目标是将输入的图像分配到一个预定义的类别中。随着深度学习技术的发展,图像分类的准确率和效率得到了显著提升。以下是图像分类的综述,涵盖其基本概念、关键技术、经典模型、应用场景、挑战及未来发展方向。

2025-02-20 08:58:50 262

原创 端边云架构

端边云架构是一种分布式计算架构,它将计算任务分布在终端设备、边缘节点和云端服务器之间,以实现高效的数据处理和资源管理。这种架构在现代物联网(IoT)、智能城市、工业互联网等场景中得到了广泛应用。端边云架构通过合理分配计算任务,优化资源利用,提高了系统的整体效率和响应速度,是未来智能化应用的重要支撑架构。

2025-02-20 08:51:54 903

原创 基于yolov5的人脸检测实现

以下是基于YOLOv5实现人脸检测的详细步骤及代码实现,包含从数据准备到模型部署的全流程: 一、环境配置。1. 在models/yolo.py中添加HAM模块。2. 配置文件yolov5s-face.yaml。2. 数据标注转换(Python实现)1. 导出TorchScript格式。1. 数据配置文件face.yaml。2. TensorRT加速部署。3. TensorRT推理示例。3. 动态数据增强实现。

2025-02-19 14:41:56 244

原创 基于机器学习的人脸识别方法探讨

通过卷积神经网络、人脸嵌入、损失函数优化等技术,人脸识别的准确率和效率得到了显著提升。然而,人脸识别仍然面临数据多样性、隐私安全、计算资源等多方面的挑战。未来,随着多模态融合、轻量化模型、隐私保护等技术的发展,人脸识别将在更多领域得到广泛应用,并进一步提升其性能和安全性。机器学习在人脸识别领域的应用是计算机视觉中最成功的案例之一。以下是机器学习在人脸识别中的应用、关键技术、流程及挑战的详细说明。通过对训练数据进行增强(如旋转、缩放、裁剪、添加噪声等),提高模型的泛化能力。4. 机器学习在人脸识别中的挑战。

2025-02-19 13:33:58 480

原创 人脸识别综述

人脸识别技术在过去几十年中取得了显著进展,尤其是深度学习技术的引入,极大地提升了识别的准确性和鲁棒性。未来,随着多模态融合、轻量化模型、隐私保护等技术的发展,人脸识别将在更多领域得到广泛应用,并进一步提升其性能和安全性。其核心任务是通过分析人脸图像或视频,提取独特的特征信息,并与数据库中的已知人脸进行比对,从而实现身份验证或识别。以下是人脸识别技术的综述,涵盖其基本概念、关键技术、应用场景、挑战及未来发展方向。① 卷积神经网络(CNN):CNN是当前人脸识别的主流方法,能够自动学习人脸的高层次特征。

2025-02-19 11:56:42 510

原创 AlexNet图像分类算法

AlexNet 是一个经典的卷积神经网络(CNN)架构,由 Alex Krizhevsky 等人在 2012 年提出,并在 ImageNet 图像分类竞赛中取得了突破性的成绩。AlexNet 的成功标志着深度学习在计算机视觉领域的崛起。以上展示了如何使用 PyTorch 实现 AlexNet 模型,并在 CIFAR-10 数据集上进行训练和测试。下面是一个使用 PyTorch 实现 AlexNet 进行图像分类的示例代码。我们将使用 CIFAR-10 数据集进行训练和测试。8. 加载模型并进行预测。

2025-02-19 10:47:27 400

原创 DenseNet图像分类算法

DenseNet(Densely Connected Convolutional Networks)是一种用于图像分类的深度学习模型,由Gao Huang等人在2017年提出。DenseNet通过密集连接的方式,使得每一层都直接连接到所有后续层,从而增强了特征传播和重用,减少了参数数量,并提高了模型的性能。实际实现时可以根据需要调整模型结构、数据集和超参数来适应不同的任务。PyTorch的`torchvision.models`模块中已经提供了预定义的DenseNet模型。7. 加载模型并进行推理。

2025-02-19 10:32:43 41

原创 ResNet图像分类

ResNet(Residual Network)是一种非常流行的深度学习模型,特别适用于图像分类任务。ResNet通过引入“残差连接”(residual connections)解决了深层网络中的梯度消失问题,使得训练非常深的神经网络成为可能。我们可以使用TorchVision中预定义的ResNet模型,也可以自己定义一个简单的ResNet模型。以上展示了如何使用PyTorch实现ResNet模型进行CIFAR-10图像分类任务。如果你有GPU,建议将模型和数据移动到GPU上进行训练,以加速训练过程。

2025-02-19 10:21:56 158

原创 GoogleNet图像分类算法

GoogleNet 的 Inception 模块通过多尺度特征提取提高了模型的表达能力,适合处理复杂的图像分类任务。可以根据需要调整模型结构或超参数,以适应不同的任务和数据集。GoogleNet(也称为 Inception v1)是由 Google 团队提出的一种深度卷积神经网络架构,以其高效的 Inception 模块和多层分类器著称。GoogleNet 的核心是 Inception 模块,它通过并行使用不同大小的卷积核来提取多尺度特征。3. 定义 GoogleNet 模型。4. 数据预处理和加载。

2025-02-19 10:00:18 46

原创 VGGNet 图像分类实现

VGGNet 是一种经典的卷积神经网络 (CNN) 架构,由牛津大学的 Visual Geometry Group 提出。VGGNet 以其简单的结构和深度著称,通常由多个卷积层和池化层堆叠而成。以下是使用 PyTorch 实现 VGGNet 进行图像分类的步骤。VGGNet 的结构简单但非常有效,适合作为深度学习入门的学习模型。可以根据需要调整模型结构或超参数,以适应不同的任务和数据集。VGGNet 有多个变体(如 VGG11、VGG16、VGG19),这里我们实现一个简单的 VGG16 模型。

2025-02-19 09:51:21 55

原创 Vision Transformer图像分类实现

Vision Transformer (ViT) 是一种基于 Transformer 架构的图像分类模型。与传统的卷积神经网络 (CNN) 不同,ViT 将图像分割成多个小块(patches),并将这些小块视为序列输入到 Transformer 中。以下是使用 PyTorch 实现 Vision Transformer 进行图像分类的步骤。在实际应用中可以根据需要调整模型的超参数,如 `embed_dim`、`depth`、`n_heads` 等,以适应不同的任务和数据集。4. 数据预处理和加载。

2025-02-19 09:29:22 413

原创 调用开源模型实现OCR识别

这些服务通常提供免费试用或按量计费的方式。3. 示例:调用百度 OCR API。2. 开源 OCR 工具**1. 使用 OCR 服务。

2025-02-18 11:00:57 561

原创 OCR识别

OCR(光学字符识别,Optical Character Recognition)的流程通常包括以下几个步骤。4. 字符分割(Character Segmentation)5.字符识别(Character Recognition)3. 文本检测(Text Detection)6. 后处理(Post-Processing)示例:OCR 识别流程的代码实现。

2025-02-18 10:14:12 398

原创 通义千问大模型接口改写文章

如果你无法直接调用通义千问 API,可以考虑使用阿里云的 DashScope 平台(通义千问的开放平台),通过 HTTP 请求调用 API。以下是 DashScope 的示例:DashScope API 示例。通过以上方法,你可以轻松调用通义千问 API 实现文章改写!3. 调用通义千问 API 实现文章改写。2. 安装阿里云 Python SDK。

2025-02-17 14:49:36 519

原创 同花顺数据爬取并生成K线

要使用Python爬取同花顺股票数据并生成K线图,你可以按照以下步骤进行。我们将使用`requests`库来获取数据,`pandas`来处理数据,`matplotlib`来绘制K线图。以下是一个简单的示例,假设你已经找到了一个可以获取股票数据的API。使用`mplfinance`库来生成K线图。`mplfinance`是专门用于绘制金融图表的库,支持K线图、成交量图等。如果你无法通过API获取数据,可以考虑使用`selenium`模拟浏览器操作来获取数据,但这通常会更复杂且效率较低。

2025-02-17 08:38:07 1396

原创 K线生成流程

在Python中,你可以使用 `matplotlib` 和 `mplfinance` 库来绘制股票的K线图(蜡烛图)。`mplfinance` 是一个专门用于绘制金融图表的库,它基于 `matplotlib`,并且提供了简单易用的接口来绘制K线图。你可以参考 `mplfinance` 的官方文档了解更多高级用法:[mplfinance 文档](https://github.com/matplotlib/mplfinance)首先,确保你已经安装了 `mplfinance` 和 `pandas` 库。

2025-02-14 10:36:09 355

原创 A股数据获取

爬取A股数据通常涉及从金融网站或API获取股票市场数据。以下是一个简单的Python示例,使用`requests`库和`BeautifulSoup`库从新浪财经爬取A股数据。如果你需要更复杂的数据分析,可以考虑使用`pandas`库来处理和分析数据,或者使用`matplotlib`库来绘制股票走势图。首先,确保你已经安装了`requests`和`BeautifulSoup`库。这些API通常需要注册并获取API密钥,具体使用方法可以参考各自的文档。

2025-02-14 10:32:33 450

原创 股票自动化交易

股票自动化交易是指通过编写程序自动执行股票买卖操作,以减少人为干预,提高交易效率和准确性。Python作为一种功能强大且易于上手的编程语言,广泛应用于金融领域,尤其是在量化交易和自动化交易中。本文使用Alpaca交易平台(支持模拟交易和实盘交易)来执行自动化交易。本文介绍了如何使用Python实现一个简单的股票自动化交易系统,包括数据获取、策略制定、信号生成、订单执行和风险管理。需要注意的是,自动化交易涉及金融风险,建议在实盘交易前充分测试策略,并严格遵守风险管理规则。在实际交易中,风险管理至关重要。

2025-02-13 18:02:27 1219

原创 行人属性识别:从图像中提取行人特征

行人属性识别(Pedestrian Attribute Recognition, PAR)是计算机视觉领域的一个重要任务,旨在从图像或视频中识别出行人的各种属性,如性别、年龄、衣着、携带物品等。本文将介绍行人属性识别的基本概念,并通过一个简单的代码示例展示如何使用深度学习模型来实现这一任务。本文介绍了行人属性识别的基本概念,并通过一个简单的代码示例展示了如何使用深度学习模型来实现这一任务。3. 属性分类:最后,基于提取的特征,使用分类器来预测行人的属性。:包含100,000张图像,标注了26种行人属性。

2025-02-13 16:10:46 830

原创 也谈deepseek本地部署

如果你有更多需求(如自定义训练、模型微调等),可以深入研究 Hugging Face 的 `transformers` 库和 PyTorch 的高级功能。你可以使用 `transformers` 库直接加载模型。如果你希望将 DeepSeek 模型部署为一个 API 服务,可以使用 `Flask` 或 `FastAPI`。如果你的机器有 GPU,可以使用 PyTorch 的 GPU 支持来加速推理。如果你的机器有多个 GPU,可以使用 PyTorch 的分布式训练和推理功能。3.2 将模型移动到 GPU。

2025-02-11 18:16:02 557

原创 streamlit打包

最近在用streamlit实现完成项目的时候,遇到一个大坑,就是如果将streamlit工程打包成exe。并且在此文件夹下新建一个“hook-streamlit.py”的文件,内容如下。③、找到项目中刚才生成的streamlit_test.spec文件。①、首先需要在工程目录下新建一个“hooks”的文件夹。然后再dist目录下即可生成有效的可执行文件。②、用常用的命令来执行打包操作。增加修改如下部分内容。

2025-01-14 21:24:55 436

原创 CBLPRD-330k数据集提取车牌数据

②、该数据集包含各种各样的车牌数据,其中有拖拉机绿牌、新能源小汽车、普通蓝牌等几十种种类的车牌类型。③、该数据集没有对应,需要依据配置文件data.txt来进行解析。配置文件的形式如下:包含文件名称、车牌号码、以及车牌类型。因项目需要,只需要单层车牌,并且不需要“学”等特殊车牌。① 、首先该数据集包含342110张车牌数据。1、CBLPRD-330k车牌数据集介绍。1),先过滤掉双层车牌以及拖拉机绿牌。2)过滤掉 特殊车牌。

2025-01-14 14:51:22 381

原创 视频编辑操作流程

视频编辑

2025-01-03 23:52:19 311

原创 CCPD数据集提取车牌数据集

车牌字典:[‘A’, ‘B’, ‘C’, ‘D’, ‘E’, ‘F’, ‘G’, ‘H’, ‘J’, ‘K’, ‘L’, ‘M’, ‘N’, ‘P’, ‘Q’, ‘R’, ‘S’, ‘T’, ‘U’, ‘V’, ‘W’, ‘X’,‘Y’, ‘Z’, ‘0’, ‘1’, ‘2’, ‘3’, ‘4’, ‘5’, ‘6’, ‘7’, ‘8’, ‘9’]0_0_22_27_27_33_16:车牌号码映射关系如下: 第一个0为省份 对应省份字典provinces中的’皖’,;025:车牌区域占整个画面的比例;

2025-01-03 10:37:29 672

原创 CCPD数据集转yolo格式

车牌字典:[‘A’, ‘B’, ‘C’, ‘D’, ‘E’, ‘F’, ‘G’, ‘H’, ‘J’, ‘K’, ‘L’, ‘M’, ‘N’, ‘P’, ‘Q’, ‘R’, ‘S’, ‘T’, ‘U’, ‘V’, ‘W’, ‘X’,‘Y’, ‘Z’, ‘0’, ‘1’, ‘2’, ‘3’, ‘4’, ‘5’, ‘6’, ‘7’, ‘8’, ‘9’]0_0_22_27_27_33_16:车牌号码映射关系如下: 第一个0为省份 对应省份字典provinces中的’皖’,;025:车牌区域占整个画面的比例;

2025-01-02 15:47:23 820

原创 白莉爱吃巧克力全套Cosplay资源

在这个充满无限想象与创意的时代,Cosplay作为一种独特的艺术表现形式,正逐渐走进越来越多人的视野。从动漫、游戏到影视,Cosplay让我们有机会将心中的角色形象化为现实,用服装、化妆、道具和表演,诠释我们对角色的理解和热爱。Cosplay的魅力在于细节,而高品质的服装与道具则是打造完美角色的关键。在Cosplay资源宝库中,你可以找到由专业设计师精心打造的服装,从面料选择到裁剪工艺,都力求还原角色原貌。同时,还有各类精致道具,无论是复杂的武器还是小巧的饰品,都能让你在Cosplay中更加出彩。

2025-01-02 11:29:22 7002

原创 OCR识别

【代码】OCR识别。

2024-12-24 12:41:15 217

原创 Virt-a-Mate(VAM)终极整合包——开启你的虚拟创作新时代

有 Archer CMA Freeer HCG Mai Mrdong Passerby Reacg Solerrain Thorn Vam-YJ Vmax ZHFX yesmola 不动 大老刘(Big_liu) 可樂(Dnaddr) 老夫子(Andifang)再额外赠送国漫人物,朱竹清,宁荣荣,小舞,胡列娜,柳神,比比东,萧薰儿,阿银,千仞雪,雅妃,云韵,云曦,南宫wan,月婵,赵灵儿,美杜莎17个系列人物场景。所见即所得解压既玩。所有场景共 纯付费压缩包资源,全是分类调试,可直接使用,附带本体与教程。

2024-11-17 16:13:31 7037

原创 车牌检测识别功能实现(pyqt)

基于pyqt+yolov5+lprnet网络实现车牌检测识别系统。用yolov5实现车牌检测定位,用lprnet网络实现车牌号码的识别,借助pyqt实现界面展示,展示最终的结果。包含图像与视频检测识别

2024-05-06 19:03:07 659

原创 Jetson NX FFmpeg硬件编解码实现

jetson nx 硬编码与硬解码的编译与测试验证

2023-10-30 19:34:23 2099 8

原创 jetson NX 刷机教程

jetson nx刷机过程

2023-10-30 17:40:02 606

原创 手机app爬虫配置(模拟机)

pem证书转.cer证书:openssl x509 -outform der -in xxx.pem -out xxx.cer。根据hash开头的值作为.pem的文件名注意后缀(.0):将FiddlerRoot.pem改为269953fb.0。修改代理服务器与端口号(代理服务器为本电脑的ip,端口号为fiddler软件配置的端口号)直接进行 证书安装,会提示 证书不被信任,所以需要安装 openssl对证书进行处理。1)进入 HTTPS 页面,进行相关配置,按照下图的设置进行配置即可。

2023-10-30 11:03:41 957

原创 车牌检测识别功能实现

本博文将结合前面训练好的模型来实现车牌的检测与识别。并用tkinter实现界面。最终通过检测车牌检测的前后时间来实现 时间与费用的统计计算展示。

2023-06-25 14:36:09 249

原创 车牌识别算法模型训练

车牌识别算法模型训练过程以及模型权重文件

2023-06-25 11:33:40 423 2

原创 基于yolov5的车牌检测

车牌的检测过程,包括模型训练操作过程以及模型训练结果

2023-06-21 16:56:15 892

原创 车牌识别数据集解析

车牌识别数据解析,对CCPD开源数据集进行解析,获取符合车牌识别算法的数据集,用于后续的模型训练

2023-06-13 11:05:53 674

PaddleOCR+HTML 图像OCR识别系统介绍

系统概述 PaddleOCR HTML图像OCR识别系统是一个基于百度飞桨(PaddlePaddle)框架的OCR识别解决方案,通过Web界面提供便捷的文本识别服务。该系统能够从上传的图像或HTML页面中提取的图片中识别文字内容。 核心组件 1. PaddleOCR引擎 基于PaddlePaddle深度学习框架 支持多语言识别(中文、英文、多语种混合等) 预训练模型支持,也可自定义训练 2. Web界面(HTML) 用户友好的上传界面 图像预览功能 识别结果展示区域 系统功能 图像OCR识别 支持JPG、PNG、BMP等常见图像格式 自动检测文本区域 高精度文字识别 HTML页面处理 解析HTML中的图像元素 保持原始页面结构的同时提取文本 高级功能 多语言混合识别 竖排文字识别 技术架构 用户界面(HTML/JS) → 后端服务(Python) → PaddleOCR引擎 → 结果处理 → 返回前端

2025-04-20

视频人体属性检测演示系统

视频人体属性检测演示系统说明 1. 系统概述 ① 目标:实时或离线检测视频中的人体属性(如性别、年龄、姿态、衣着、动作等)。 ② 应用场景:安防监控、智慧零售、人机交互、体育分析等。 ③ 核心功能: 1)人体检测。 2)多属性识别(性别、年龄、服装、携带物品等)。 3)姿态/动作分析(站立、行走、举手等)。 4)可视化结果展示与数据导出。 2. 系统架构 ① 输入模块 1)支持本地视频文件。 2)视频解码与帧提取。 ② 处理模块 1)人体检测:YOLO等算法定位人体位置。 2)属性识别:基于深度学习模型(如paddleclas)分类属性。 3)跟踪算法:ByteTrack等实现跨帧ID关联。 4)可视化界面:标注框、属性标签。 4. 使用说明 ① 依赖库:Python 3.9+, PyTorch, OpenCV。 ② 硬件建议:NVIDIA GPU(可选CPU模式但性能下降)。 ③ 详细环境搭建以及运行流程见文档 “使用说明.txt” ④ 交互界面,html实现的前端页面

2025-04-18

html实现的经典贪吃蛇游戏

游戏特点 经典重现:完美复刻经典贪吃蛇游戏玩法 精美界面:现代化UI设计,视觉效果出色 完整功能:包含完整游戏控制 如何使用 将上述代码复制到HTML文件中 在浏览器中打开该文件即可开始游戏 电脑使用方向键控制 避免撞墙或撞到自己身体 这个贪吃蛇游戏不仅功能完整,而且界面美观,代码结构清晰,是学习HTML5游戏开发的优秀示例!

2025-04-09

Flask + YOLO + HTML 实现前后端图像/视频目标检测:零基础实战教程

《从零搭建!Flask+YOLO+HTML打造高精度图像/视频目标检测系统(附完整源码)》 简介: 想用Python快速搭建一个属于自己的目标检测Web应用?本教程手把手教你如何用Flask作为后端框架,结合YOLO深度学习模型,以及HTML+JavaScript前端交互,实现一个支持图片和视频上传的实时目标检测系统! 你将学到: 如何用Flask搭建轻量级后端API YOLO模型的集成与优化技巧 前端动态展示检测结果(画框+标签+置信度) 支持图片上传、视频流实时处理 完整项目结构 & 源码分享 无论你是深度学习初学者,还是想进阶全栈开发的工程师,这个项目都能让你快速掌握AI落地的核心技能! 上传图片/视频 → YOLO实时检测 → 前端动态渲染结果

2025-04-07

【Flask+paddle深度学习】高精度音频识别系统(附完整源码、模型&详细部署教程)

项目亮点 前沿技术栈:基于Python Flask框架+Paddle深度学习模型,实现端到端的音频识别。 全流程开源:提供完整项目源码、预训练模型、可直接二次开发。 资源内容 核心代码 Flask后端API(音频上传/实时流处理) Paddle模型训练/推理代码 前端Demo(HTML+JS可视化交互界面) 增值资料 完整开发文档(API说明/参数调优技巧/性能压测报告) 适合人群 想快速落地音频AI项目的工程师 需要交Flask毕业设计的学生(提供论文框架) 学习语音处理与模型部署的开发者

2025-04-07

deepseek资料大全

deepseek相关资源 包含介绍,部署手册,以及window与mac的相关文件,模型 指导手册,使用指南等, 共计 182G

2025-02-19

大货车车牌自动生成程序

通过该程序可以实现自动生成模拟车牌,可以用来扩充数据集

2024-12-05

好用的硬盘数据恢复软件

硬盘数据恢复软件,可以用来恢复U盘丢失的数据

2024-11-27

VisionTransformer图像分类

VisionTransformer算法实现的图像分类,包含训练代码以及检测代码,数据集见 https://download.csdn.net/download/reset2021/89263991 下载后,可以修改train中的类别以及数据集地址训练其他数据集模型

2024-05-08

VGGNet图像分类算法

VGGNet算法实现的图像分类,包含训练代码以及检测代码,数据集见 https://download.csdn.net/download/reset2021/89263991 下载后,可以修改train中的类别以及数据集地址训练其他数据集模型

2024-05-08

GoogleNet图像分类算法

GoogleNet算法实现的图像分类,包含训练代码以及检测代码,数据集见 https://download.csdn.net/download/reset2021/89263991 下载后,可以修改train中的类别以及数据集地址训练其他数据集模型

2024-05-08

pyqt+yolo+lprnet车牌检测识别系统

基于pyqt+yolov5+lprnet网络实现车牌检测识别系统。用yolov5实现车牌检测定位,用lprnet网络实现车牌号码的识别,借助pyqt实现界面展示,展示最终的结果。包含图像与视频检测识别

2024-05-06

ResNet图像分类算法

ResNet算法实现的图像分类,包含训练代码以及检测代码,数据集见 https://download.csdn.net/download/reset2021/89263991 下载后,可以修改train中的类别以及数据集地址训练其他数据集模型

2024-05-06

DenseNet图像分类

DenseNet算法实现的图像分类,包含训练代码以及检测代码,数据集见 https://download.csdn.net/download/reset2021/89263991 下载后,可以修改train中的类别以及数据集地址训练其他数据集模型

2024-05-05

AlexNet图像分类

AlexNet算法实现的图像分类,包含训练代码以及检测代码,数据集见 https://download.csdn.net/download/reset2021/89263991

2024-05-04

动物食槽数据集(五分类)

动物食槽数据集,五分类,可以用来进行图像分类处理。类别已经处理完成,可以直接用于图像分类来处理。

2024-05-04

车辆类型以及车牌检测数据集

数据集有点大,无法直接上传。 数据集类型包含bus、microbus、minivan suv、sedan、truck、plate

2024-05-03

yolo人脸目标检测数据集

对widerface数据集进行转换,生成的符合yolo格式的数据集,可以直接用于人脸目标检测的训练。

2024-05-03

图像视频的车牌检测系统

通过yolo算法实现车牌定位模型,对车牌进行检测定位,并且通过LPRNET模型实现对车牌内容的OCR识别,从而达到对车辆车牌的检测识别,并且提供图像与视频的两种检测方式。最终通过pyqt实现对功能的展示。 环境搭建,见plate_pyqt.txt

2024-04-26

目标检测数据集的扩充升级版

对已经标注的目标检测小数据集进行扩充。并且支持xml与txt两种模式,参数可以配置,可以配置扩充的倍数,最多可以对原始数据集扩充8倍。并且增加小数据集对环境的适应性。是目标检测中数据集处理必不可少的一个工具代码。

2024-04-11

目标检测数据集扩充程序

针对小样本数据集的扩充处理,小样本数据集数据量有限,将影响最终的训练结果,该程序在标注后的样本的基础上,基于图像对比度、亮度等变化,对小样本的样本数量进行扩充,从而提升最终模型的精度

2023-12-04

车牌检测识别功能实现,包含界面

车牌检测识别功能实现,通过tkinter实现界面展示,并且通过mysql进行结果存储

2023-06-25

车牌识别源码以及训练结果

车牌识别算法源码以及训练权重结果

2023-06-25

基于yolov5的车牌检测

车牌检测模型训练结果

2023-06-21

猪(pig)目标检测数据集

猪(pig)目标检测数据集,yolo格式的,可以直接用来yolo系列的训练,不需要进行再次转化,直接修改相应的yaml配置文件,即可使用。

2023-03-26

python多线程定时器

通过多线程实现定时器,定时启动多线程,并且带有参数,threadtimer为定时器,main为主程序,可以按照间隔启动多线程

2023-03-11

基于深度学习的摔倒检测

用yolov5算法实现摔倒行为检测识别,模型已经训练完毕,存放路径在runs/train目录下,模型可以直接拿来使用,相应的训练参数见runs/train下面的相应图形,检测效果见runs/detect目录下。可以用来做异常行为或者智能守护中的摔倒行为检测等应用。

2023-03-06

基于yolov5的猪体(pig)识别

用yolov5算法实现猪体检测识别,模型已经训练完毕,存放路径在runs/train目录下,模型可以直接拿来使用,相应的训练参数见runs/train下面的相应图形,检测效果见runs/detect目录下。可以用来做猪(pig)的盘点等应用。

2023-03-04

牛(cow)目标检测数据集

基于coco_2014与VOC_2017数据集为基础,提取出来的牛(cow)单一种类的目标检测数据集(包含4110张各种场景下的cow图片),可用于cow的目标检测识别,以及cow的个体统计。格式符合yolo系列的(voc)格式,可以直接使用。

2023-03-04

牛(cow)数据集,VOC格式

基于VOC_2006与VOC_2012数据集的裁剪梳理,提取出来的牛(cow)单一种类的目标检测数据集(包含613张各种场景下的cow图片),可用于cow的目标检测识别,以及cow的个体统计。格式符合yolo系列的(voc)格式,可以直接使用。

2023-03-04

基于深度学习的钢筋端面识别

用yolov5算法实现钢筋断面检测识别,模型已经训练完毕,存放路径在runs/train目录下,模型可以直接拿来使用,相应的训练参数见runs/train下面的相应图形,检测效果见runs/detect目录下。可以用来做钢筋盘点等应用。

2023-03-04

yolov5牛体检测识别

用yolov5算法实现cow(牛)体检测识别,模型已经训练完毕,存放路径在runs/train目录下,模型可以直接拿来使用,检测效果见runs/detect目录下

2023-02-28

tkinter实现图像与视频中的人员统计

基于yolov5算法实现人员检测识别,并且对视频与图像中的行人进行人员统计,最后用tkinter实现前端展示,并且最终会对行人进行阈值比较,超过阈值进行报警通知(弹框提示)。

2023-02-27

前后端实现口罩检测与人脸识别

前后端分离实现对视频中的行人进行口罩检测,并对为检测到口罩的行人进行人脸识别。涉及到的技术有 python,vue,yolov5,knn,人脸识别,口罩检测。 其中后端主要是用python(flask)来实现主要算法以及数据存储等),前端用vue实现,对上传的视频和图片进行分析展示。

2023-02-19

python-flask-vue实现前后端人体与车辆属性检测

前后端分离的人体(车辆)属性检测系统。其中后端主要是用python(flask)来实现主要算法以及数据存储等),前端用vue实现,对上传的视频和图片进行分析展示

2023-02-18

基于yolov6的安全帽检测

基于yolov6的安全帽检测,模型已经训练好,可以直接使用,模型位置runs/train,检测例子位于runs/detect。并且包含数据集,可以直接进行训练,数据集位置hat_recog

2022-10-18

基于yolov5的安全帽检测

基于yolov5的安全帽检测,模型已经训练好,可以直接使用,模型位置runs/train,检测例子位于runs/detect。并且包含数据集,可以直接进行训练,数据集位置hat_recog

2022-10-18

口罩数据集(mask,nomask),VOC格式,可用于目标检测

本数据集是一个专门为计算机视觉和人工智能研究设计的口罩佩戴检测数据集,适用于人脸识别、目标检测和公共卫生安全等相关领域的研究与应用开发。数据集包含大量标注图像,覆盖多种真实场景下的口罩佩戴情况。 数据集特点 包含10,000+高质量图像 多样性强 多种口罩类型:医用外科口罩、N95口罩、布口罩等 不同佩戴方式:正确佩戴、不正确佩戴、未佩戴口罩 各种光照条件和背景环境 精细标注 每张图像包含XML格式的标注文件 标注内容:人脸边界框、口罩佩戴状态、口罩类型 应用场景 口罩佩戴检测算法开发 公共卫生监控系统

2022-07-12

winder_face 的VOC格式,可用于人脸检测训练(平台限制,这是第二部分)

将开源winder数据集进行格式转换,转换成VOC格式,可用于人脸检测训练与测试

2022-07-01

winder_face 的VOC格式,可用于人脸检测训练

将winder数据集转换为 VOC格式,可用于人脸检测训练

2022-07-01

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除