reset2021
这个作者很懒,什么都没留下…
展开
-
yolo系列发展
后续版本在保持速度的同时,通过结构创新(如FPN、RepVGG)和训练技巧(如动态标签分配)持续提升精度。:由Alexey Bochkovskiy团队提出(非官方版本,但被广泛认可)。:从两阶段(Faster R-CNN)到单阶段(YOLO),再到轻量化设计。:输入图像尺寸动态调整(320×320到608×608),增强鲁棒性。:通过3种不同尺度的特征图(FPN结构)检测不同大小目标。:引入先验框(Anchor),提高边界框预测的多样性。:引入残差结构(ResNet),提升特征提取能力。原创 2025-04-18 14:52:11 · 582 阅读 · 0 评论 -
目标检测综述
通过滑动窗口遍历图像,结合手工设计的特征(如HOG、SIFT、Haar)和分类器(如SVM、Adaboost)进行检测。(You Only Look Once):YOLOv1(2016)到YOLOv9(2024),兼顾速度与精度。(2020):首次将Transformer引入目标检测,端到端训练,无需手工设计组件(如NMS)。:用边界框(Bounding Box)标出物体的位置,通常用坐标(x, y, w, h)表示。:结合文本(如CLIP)、点云(LiDAR)等信息。原创 2025-04-18 14:43:14 · 75 阅读 · 0 评论 -
Faster R-CNN 算法详解
深度特征网络(Backbone Network):用于提取图像的高层次特征,比如 VGG 或 ResNet。区域建议网络(RPN,Region Proposal Network):用于生成候选区域(RoIs)。Fast R-CNN 检测器:对每个 RoI 进行类别分类和边界盒回归。特征提取区域建议生成分类和回归Faster R-CNN作为一代经典的目标检测框架,其核心创新在于将区域建议生成与深度特征网络紧密融合,加快训练速度并显著降低计算复杂度。原创 2025-03-03 08:38:09 · 542 阅读 · 0 评论 -
SSD目标检测
上述代码示例中使用PyTorch框架,易于理解和验证,实验结果可以在公开数据集上进行评估,如PASCAL VOC或COCO数据集,以检验模型性能。定义数据集加载器,实现数据增强策略,如随机裁剪、翻转等。实现非极大值抑制,定义评估指标如mAP,并提供测试代码。配置数据加载器,定义优化器和损失函数,并实现训练循环。定义SSD模型的结构,包括特征提取网络和预测器。c) 数据加载与训练循环。a) 数据加载与预处理。原创 2025-03-02 09:35:47 · 51 阅读 · 0 评论 -
yolov6训练自己的数据集
yolov6 训练自己的数据集,以实操为主原创 2022-07-22 14:39:38 · 1204 阅读 · 0 评论 -
yolov4 训练自己的数据集
基于yolov4算法训练自己的数据集,从实操入手原创 2022-07-22 10:13:32 · 1468 阅读 · 1 评论 -
yolov5训练自己的数据集--篮球
用yolov5实现篮球目标检测。1)数据集① 数据集收集采用爬虫或者其他方式,收集带有篮球的图片② 数据集标注用labelImg(labelImg安装方式请参照相关教程)标注收集好的篮球数据集。1)打开labelImg软件,导入数据集2)对目标(篮球)进行画框标注3)保存对应的label文件生成对应的label文件(xml文件)如下所示<annotation> <folder/> <filename>0.jpg..原创 2022-04-25 17:06:38 · 2107 阅读 · 0 评论 -
yolov3 训练自己的数据集
基于yolov3 源码训练自己的数据集,实现目标检测原创 2022-07-20 14:57:45 · 796 阅读 · 0 评论 -
faster-rcnn 训练自己的数据集
faster rcnn 训练自己的数据集原创 2022-07-16 15:47:24 · 2389 阅读 · 0 评论 -
ssd训练自己的数据集
基于SSD实现目标检测(训练自己的数据集)原创 2022-07-12 09:21:15 · 6138 阅读 · 0 评论
分享