循环神经网络1—RNN

这周在看循环神经网络,发现一个博客,里面的推导过程极其详细,借此记录重点

详细推导

强烈介意手推一遍,虽然可能会花一点时间,但便于理清思路。

语言模型

RNN是在自然语言处理领域中最先被用起来的,比如,RNN可以作为语言模型来建模。

什么是语言模型?

语言模型:给定一个一句话前面的部分,预测接下来最有可能的一个词是什么。

语言模型可以用在语音转文本(STT)上,也可以用在图像到文本的识别中(OCR)。

使用RNN之前,语言模型主要采用N-Gram,即先对句子切词,再在语料库中搜索前n个词进行预测,这样想法没有实用性,因为根本没有用到有用的信息,并且该模型还会占用海量的存储空间。

所以,RNN出现,理论上RNN可以往前看(往后看)任意多个词。

循环神经网络

基本神经网络

点击查看大图

如上图左,一个简单的循环神经网络由一个输入层、一个隐藏层和一个输出层组成。

其中, x x 是一个向量,代表输入层的值;s是一个向量,代表隐藏层的值; o o 是一个向量,代表输出层的值。

U是输入层到隐藏层的权重矩阵 V V 是隐藏层到输出层的权重矩阵权重矩阵W是隐藏层上一次的值作为这一次的输入的权重。循环神经网络与普通的全连接神经网络不同的地方也就在于 W W

如上图右,可表示循环神经网络的计算方式:

(1)ot=g(Vst)(1)(2)st=f(Uxt+Wst1)(2)

其中,式1是输出层的计算公式,输出层是一个全连接层,即每一个节点都与隐藏层的每个节点相连,g代表激活函数, V V 是输出层的权重矩阵。

式2是隐藏层的计算公式,它是一个循环层,f是激活函数,U是输入 x x 的权重矩阵,W是上次值 st1 s t − 1 作为这次输入的权重矩阵。

双向循环神经网络

对于语言模型来说,很多时候光看前面的词是不够的,还需要看后面的词。普通的基本循环神经网络对此无法建模,因此,我们需要双向循环神经网络

点击查看大图

从上图可知,双向循环神经网络的隐藏层要保存两个值,一个 A A 参与正向计算,另一个值A参与反向计算。最后的输出值 y2 y 2 取决于 A2 A 2 A2 A 2 ′ 。仿照式1和试2,双向循环神经网络的计算方法如下:

otstst=g(Vst+Vst)=f(Uxt+Wst1)=f(Uxt+Wst+1)(3)(4)(5) (3) o t = g ( V s t + V ′ s t ′ ) (4) s t = f ( U x t + W s t − 1 ) (5) s t ′ = f ( U ′ x t + W ′ s t + 1 ′ )

可以看出:正向计算时,隐藏层的值 st s t st1 s t − 1 有关;反向计算时,隐藏层的值 st s t ′ st1 s t − 1 ′ 有关。正向计算和反向计算 不共享权重,也就是说 U U U W W W V V V都是不同的权重矩阵。

深度循环神经网络

之前介绍的RNN都是只有一个隐藏层,当堆叠两个以上隐藏层时,就得到了深度循环神经网络

点击查看大图

把第i个隐藏层的值表示为 s(i)t s t ( i ) s(i)t s t ′ ( i ) ,则深度循环神经网络的计算方式可以表示为:

ots(i)ts(i)t...s(1)ts(1)t=g(V(i)s(i)t+V(i)s(i)t)=f(U(i)s(i1)t+W(i)st1)=f(U(i)s(i1)t+W(i)st+1)=f(U(1)xt+W(1)st1)=f(U(1)xt+W(1)st+1)(6)(7)(8)(9)(10)(11) (6) o t = g ( V ( i ) s t ( i ) + V ′ ( i ) s t ′ ( i ) ) (7) s t ( i ) = f ( U ( i ) s t ( i − 1 ) + W ( i ) s t − 1 ) (8) s t ′ ( i ) = f ( U ′ ( i ) s t ′ ( i − 1 ) + W ′ ( i ) s t + 1 ′ ) (9) . . . (10) s t ( 1 ) = f ( U ( 1 ) x t + W ( 1 ) s t − 1 ) (11) s t ′ ( 1 ) = f ( U ′ ( 1 ) x t + W ′ ( 1 ) s t + 1 ′ )

循环神经网络的训练

循环神经网络的训练算法:BPTT

BPTT算法是针对循环层的训练算法,基本原理和BP算法一样,包含三个步骤:

  1. 前向计算每个神经元的输出值;

  2. 反向计算每个神经元的误差项 δj δ j 值,它是误差函数E对神经元j的加权输入 netj n e t j 的偏导数;

  3. 计算每个权重的梯度。

最后再用随机梯度下降算法更新权重。

循环层如下图所示:

点击查看大图

1. 前向计算

使用式2对循环层进行前向计算:

st=f(Uxt+Wst1) s t = f ( U x t + W s t − 1 )

上式中, st s t xt x t st1 s t − 1 都是向量,U、V是矩阵,向量的下标表示时刻。

2. 误差项的计算

BTPP算法将第 l l 层的t时刻的误差项δtl值沿两个方向传播,一个方向是传递到上一层网络,得到 δl1t δ t l − 1 值,这部分只与U有关;另一方向是沿时间线传递到初始 t1 t 1 时刻,得到 δl1 δ 1 l 值,这部分只与W有关。

我们用向量 nett n e t t 表示神经元在t时刻的加权输入,因为:

nettst1=Uxt+Wst1=f(nett1)(12)(13) (12) n e t t = U x t + W s t − 1 (13) s t − 1 = f ( n e t t − 1 )

因此(详细推导此处略过,详情见链接):
nettnett1=nettst1st1nett1=Wdiag[f(nett1)]=w11f(nett11)w21f(nett11)wn1f(nett11)w12f(nett12)w22f(nett12)..wn2f(nett12).........w1nf(nett1n)w2nf(nett1n)wnnf(nett1n)(14)(15)(16) (14) ∂ n e t t ∂ n e t t − 1 = ∂ n e t t ∂ s t − 1 ∂ s t − 1 ∂ n e t t − 1 (15) = W d i a g [ f ′ ( n e t t − 1 ) ] (16) = [ w 11 f ′ ( n e t 1 t − 1 ) w 12 f ′ ( n e t 2 t − 1 ) . . . w 1 n f ( n e t n t − 1 ) w 21 f ′ ( n e t 1 t − 1 ) w 22 f ′ ( n e t 2 t − 1 ) . . . w 2 n f ( n e t n t − 1 ) . . w n 1 f ′ ( n e t 1 t − 1 ) w n 2 f ′ ( n e t 2 t − 1 ) . . . w n n f ′ ( n e t n t − 1 ) ]

上式描述了将δ沿时间往前传递一个时刻的规律,根据这个规律,可以求得任意时刻k的误差项 δk δ k
δTk=====EnetkEnettnettnetkEnettnettnett1nett1nett2...netk+1netkWdiag[f(nett1)]Wdiag[f(nett2)]...Wdiag[f(netk)]δltδTti=kt1Wdiag[f(neti)](3)(17)(18)(19)(20)(21) (17) δ k T = ∂ E ∂ n e t k (18) = ∂ E ∂ n e t t ∂ n e t t ∂ n e t k (19) = ∂ E ∂ n e t t ∂ n e t t ∂ n e t t − 1 ∂ n e t t − 1 ∂ n e t t − 2 . . . ∂ n e t k + 1 ∂ n e t k (20) = W d i a g [ f ′ ( n e t t − 1 ) ] W d i a g [ f ′ ( n e t t − 2 ) ] . . . W d i a g [ f ′ ( n e t k ) ] δ t l (21) = δ t T ∏ i = k t − 1 W d i a g [ f ′ ( n e t i ) ] ( 式 3 )

式3是将误差项沿时间反向传播的算法。

循环层将误差项反向传递到上一层网络,与普通的全连接层完全一样。

(δl1t)T===Enetl1tEnetltnetltnetl1t(δlt)TUdiag[fl1(netl1t)](4)(22)(23)(24) (22) ( δ t l − 1 ) T = ∂ E ∂ n e t t l − 1 (23) = ∂ E ∂ n e t t l ∂ n e t t l ∂ n e t t l − 1 (24) = ( δ t l ) T U d i a g [ f ′ l − 1 ( n e t t l − 1 ) ] ( 式 4 )

式4就是将误差项传递到上一层的算法。

3. 权重梯度的计算

首先,我们计算误差函数E对权重矩阵W的梯度 EW ∂ E ∂ W .

点击查看大图

上图展示了前两步已经计算得到的值,包括每个时刻t循环层的输出值 st s t 以及误差项 δt δ t

梯度计算算法:只要知道了任意一个时刻的误差项 δt δ t ,以及上一个时刻循环层的输出值 st1 s t − 1 ,就可以按照下面的公式求出权重矩阵在t时刻的梯度 WtE ∇ W t E :

WtE=δt1st11δt2st11..δtnst11δt1st12δt2st12δtnst12.........δt1st1nδt2st1nδtnst1n(5) ∇ W t E = [ δ 1 t s 1 t − 1 δ 1 t s 2 t − 1 . . . δ 1 t s n t − 1 δ 2 t s 1 t − 1 δ 2 t s 2 t − 1 . . . δ 2 t s n t − 1 . . δ n t s 1 t − 1 δ n t s 2 t − 1 . . . δ n t s n t − 1 ] ( 式 5 )

我们求得了权重矩阵W在t时刻的梯度 WtE ∇ W t E ,最终的梯度 WE ∇ W E 是各个时刻的梯度 之和(至于为什么是“和”,详细推导见链接):
WE==i=1tWiEδt1st11δt2st11..δtnst11δt1st12δt2st12δtnst12.........δt1st1nδt2st1nδtnst1n+...+δ11s01δ12s01..δ1ns01δ11s02δ12s02δ1ns02.........δ11s0nδ12s0nδ1ns0n(6)(25)(26) (25) ∇ W E = ∑ i = 1 t ∇ W i E (26) = [ δ 1 t s 1 t − 1 δ 1 t s 2 t − 1 . . . δ 1 t s n t − 1 δ 2 t s 1 t − 1 δ 2 t s 2 t − 1 . . . δ 2 t s n t − 1 . . δ n t s 1 t − 1 δ n t s 2 t − 1 . . . δ n t s n t − 1 ] + . . . + [ δ 1 1 s 1 0 δ 1 1 s 2 0 . . . δ 1 1 s n 0 δ 2 1 s 1 0 δ 2 1 s 2 0 . . . δ 2 1 s n 0 . . δ n 1 s 1 0 δ n 1 s 2 0 . . . δ n 1 s n 0 ] ( 式 6 )

式6就是计算循环层权重矩阵W的梯度的公式。

RNN的梯度爆炸和消失问题

不幸的是,前面提到的几种RNNs都不能很好的处理较长的序列。原因是RNN在训练中很容易发生梯度爆炸梯度消失,这导致训练梯度不能在较长序列中一直传递下去,从而使RNN无法捕捉到长距离的影响。(具体原因见链接)

处理梯度爆炸:设置一个梯度阈值,当梯度超过这个阈值时可以直接截取。

处理梯度消失:

  1. 合理的初始化权重值。初始化权重,使每个神经元尽可能不要取极大值或极小值,以躲开梯度消失的区域。

  2. 使用ReLU代替Sigmoid和tanh作为激活函数。

  3. 使用其他结构的RNNs,如长短时记忆网络(LTSM)和Gated Recurrent Unit(GRU)。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值