【机器学习|数学基础】Mathematics for Machine Learning系列之线性代数(2):n阶行列式、对换

专栏: 

机器学习

温馨提示

若文中数学公式显示不正常或未显示

可以查看 MML学习笔记(二):线性代数之n阶行列式、对换

前言

Hello!小伙伴!

非常感谢您阅读海轰的文章,倘若文中有错误的地方,欢迎您指出~  

自我介绍 ଘ(੭ˊᵕˋ)੭

昵称:海轰

标签:程序猿|C++选手|学生

简介:因C语言结识编程,随后转入计算机专业,有幸拿过一些国奖、省奖...已保研。目前正在学习C++/Linux/Python

学习经验:扎实基础 + 多做笔记 + 多敲代码 + 多思考 + 学好英语!  

机器学习小白阶段

文章仅作为自己的学习笔记 用于知识体系建立以及复习

知其然 知其所以然!

1.3 n阶行列式

三阶行列式为:∣�11�12�13�21�22�23�31�32�33∣=�11∗�22∗�33+�12∗�23∗�31+�13∗�21∗�32−�11∗�23∗�32−�12∗�21∗�33−�13∗�22∗�31∣∣​a11​a21​a31​​a12​a22​a32​​a13​a23​a33​​∣∣​=a11​∗a22​∗a33​+a12​∗a23​∗a31​+a13​∗a21​∗a32​−a11​∗a23​∗a32​−a12​∗a21​∗a33​−a13​∗a22​∗a31​

从中我们可以发现规律:∣�11�12�13�21�22�23�31�32�33∣=∑(−1)��1�1�2�2�3�3∣∣​a11​a21​a31​​a12​a22​a32​​a13​a23​a33​​∣∣​=∑(−1)ta1p1​​a2p2​​a3p3​​

其中t为排列�1�2�3p1​p2​p3​的逆序数

进而推出n阶行列式:∣�11�12...�1��21�22...�2�......��1��2...���∣=∑(−1)��1�1�2�2...����∣∣​a11​a21​..an1​​a12​a22​..an2​​.........​a1n​a2n​..ann​​∣∣​=∑(−1)ta1p1​​a2p2​​...anpn​​

特殊情况1:∣�1�2..��∣=�1�2...��∣∣​λ1​​λ2​​.​.​λn​​∣∣​=λ1​λ2​...λn​

特殊情况2:∣�1�2..��∣=(−1)�(�−1)2�1�2...��(其中(−1)�(�−1)2为排列�、�−1...3、2、1的逆序数)∣∣​λn​​.​.​λ2​​λ1​​∣∣​=(−1)2n(n−1)​λ1​λ2​...λn​(其中(−1)2n(n−1)​为排列n、n−1...3、2、1的逆序数)

1.4 对换

1.4.1 排列的对换

概念

  • 对换:在排列中,将任意两个元素对调,其余的元素不动。
  • 相邻对换:在排列中,相邻两个元素进行对换

定理1

内容

一个排列中任意两个元素对换,奇偶性发生改变

证明

首先证明相邻对换的情况

设排列�1...�����1...��a1​...ai​abb1​...bm​

a和b对换,变成�1...�����1...��a1​...ai​bab1​...bm​

显然,�1...��a1​...ai​、�1...��b1​...bm​这些元素的逆序数没有发生变化

当a<b时

  • 从ab变为ba,a的逆序数+1(a前面多了一个b),b的逆序数不变

当a>b时,

  • 从ab变为ba,a的逆序数不变,b的逆序数-1(b前面少了一个a)

所以

排列中发生相邻对换,奇偶性会发现变化(奇排列-> 偶排列 or 偶排列->奇排列)

再来证明一般情况

�1...����1...����1...��a1​...ai​ab1​...bm​bc1​...cn​ ,a与b发生对换,变为�1...����1...����1...��a1​...ai​bb1​...bm​ac1​...cn​

我们可以先用�b与��bm​进行相邻对换,变为�1...����1...����1...��a1​...ai​ab1​...bbm​c1​...cn​

再用�b与��−1bm−1​进行相邻对换,变为�1...����1...���−1���1...��a1​...ai​ab1​...bbm−1​bm​c1​...cn​ . . . 最后�b与�1b1​进行相邻对换,变为�1...�����1...���1...��a1​...ai​abb1​...bm​c1​...cn​

一共经历了m次相邻对换

和��、��−1...�2、�1bm​、bm−1​...b2​、b1​对换,一共就是m次

然后,我们再用�a与�b进行相邻对换,变为�1...�����1...���1...��a1​...ai​bab1​...bm​c1​...cn​

再用�a与�1b1​进行相邻对换,变为�1...����1�...���1...��a1​...ai​bb1​a...bm​c1​...cn​ . . . 最后�a与��bm​进行相邻对换,变为�1...����1...����1...��a1​...ai​bb1​...bm​ac1​...cn​

一共经历了(m+1)次相邻对换

综上

一共发生了m+(m+1)=2m+1次相邻对换

从最开始的证明可以得出

2m+1次相邻对换后,排列的奇偶性还是会发生改变 (交换1次,奇偶性发生转变;交换2次,奇偶性不发生变化-->交换奇数次,奇偶性发生转变;偶数次则不会。2m+1一定是奇数 ,当m为正整数时)

推论

齐排列变成标准排列的对换次数为奇数,偶排列变成标准排列的对换次数为偶数。

说明

首先,标准排列是逆序数为0的偶排列   从定理1可以得知,对换一次,奇偶性发生改变   若是齐排列,对换一次,奇->偶,再对换一次,偶->奇... 对换奇数次,最后变为了偶排列; 对换偶数次,最后变为奇排列。   所以齐排列变成标准排列的对换次数一定为奇数。 偶排列变成标准排列的对换次数为偶数同理可证。

1.4.2 行列式的另一种表示方法

n阶行列式有:∣�11�12...�1��21�22...�2�......��1��2...���∣=∑(−1)��1�1...����...����...����∣∣​a11​a21​..an1​​a12​a22​..an2​​.........​a1n​a2n​..ann​​∣∣​=∑(−1)ta1p1​​...aipi​​...ajpj​​...anpn​​

我们选择任意一项:�1�1...����...����...����a1p1​​...aipi​​...ajpj​​...anpn​​,其中1...i...j...n为自然排列,(−1)�(−1)t中的t为逆序数

然后交换����、����aipi​​、ajpj​​,得到 �1�1...����...����...����a1p1​​...ajpj​​...aipi​​...anpn​​

我们来计算奇偶性的变化

首先,我们知道只是交换来两个元素的位置,该项的值是不会发生变化的。

行标从 1...i...j...n 变为了 1...j...i...n,可以得出排列1...j...i...n的逆序数为是奇数,设为r

因为1...i...j...n逆序数为0,偶排列 根据排列任意元素对换,奇偶性改变, 1...j...i...n就变成了齐排列,那么其逆序数一定就是奇数

同样,设�1...��...��...��p1​...pj​...pi​...pn(列标)的逆序数为�1t1​,得到

�1�1...����...����...����a1p1​​...ajpj​​...aipi​​...anpn​​前面的正负符号为(−1)�+�1(−1)r+t1​

因为

(−1)�1=(−1)(−1)�=−(−1)�(−1)t1​=(−1)(−1)t=−(−1)t

�1...��...��...��p1​...pi​...pj​...pn的逆序数为t �1�1...����...����...����a1p1​​...aipi​​...ajpj​​...anpn​​前面的系数为(−1)�(−1)t​  对换一次变为�1...��...��...��p1​...pj​...pi​...pn 奇偶性发生变化 其实就是乘以(-1) (排列中,任意两个元素发生对换,奇偶性发生变化,其实就是乘以(-1))   所以(−1)(−1)�1=(−1)�(−1)(−1)t1​=(−1)t

又因为r为奇数,有

(−1)�=−1(−1)r=−1

综合下面两个式子:{(−1)�1=(−1)(−1)�=−(−1)�(−1)�=−1{(−1)t1​=(−1)(−1)t=−(−1)t(−1)r=−1​

得到:

(−1)�+�1=(−1)�(−1)�1=(−1)∗(−1)�1=(−1)∗(−(−1)�)=(−1)�(−1)r+t1​=(−1)r(−1)t1​=(−1)∗(−1)t1​=(−1)∗(−(−1)t)=(−1)t

推出:

(−1)��1�1...����...����...����=(−1)�+�1�1�1...����...����...����(−1)ta1p1​​...aipi​​...ajpj​​...anpn​​=(−1)r+t1a1p1​​...ajpj​​...aipi​​...anpn​​

说明

对换行列式中某一项两个元素的位置,使得行坐标、列坐标同时发生变化,但是却并不会改变该项的奇偶性。

一次交换不会改变奇偶性,那么多次交换也不会改变奇偶性

(−1)��1�1�2�2...����(−1)ta1p1​​a2p2​​...anpn​​经历若干次对换 列标排列�1�2...��p1​p2​...pn​一定可以变为自然排列(1 2 3... n)

设若干次变换后 列标排列变为了自然排列 行标排列设为�1�2...��q1​q2​...qn​,则有

(−1)��1�1�2�2...����=(−1)���11��22...����(−1)ta1p1​​a2p2​​...anpn​​=(−1)taq1​1​aq2​2​...aqn​n​

对于其中任意一项 ���aij​,有{���=�������=����{aij​=aipi​​aij​=aqj​j​​

得到{�=���=��{j=pi​i=qj​​

说明由��pi​可以确定唯一对应的一个��qj​,比如2=�32=p3​ 说明 �2=3q2​=3 且唯一!

那么由�1�2...��p1​p2​...pn​ 可以确定唯一的�1�2...��q1​q2​...qn​

定理2

内容

n阶行列式也可以定义为:∑(−1)���11��22...����∑(−1)tap1​1​ap2​2​...apn​n​

证明

首先,n阶行列式有:∣�11�12...�1��21�22...�2�......��1��2...���∣=∑(−1)��1�1�2�2...����∣∣​a11​a21​..an1​​a12​a22​..an2​​.........​a1n​a2n​..ann​​∣∣​=∑(−1)ta1p1​​a2p2​​...anpn​​

令{�=∑(−1)��1�1�2�2...�����1=∑(−1)���11��22...����{D=∑(−1)ta1p1​​a2p2​​...anpn​​D1​=∑(−1)tap1​1​ap2​2​...apn​n​​

从定理1最后的讨论中可以得到:

D中任意一项(−1)��1�1�2�2...����(−1)ta1p1​​a2p2​​...anpn​​有且只有一项D1中的某一项(−1)���11��22...����(−1)taq1​1​aq2​2​...aqn​n​与之对应**(q是可以有p确定的);**   同理,D1中任意一项(−1)���11��22...����(−1)tap1​1​ap2​2​...apn​n​也有且只有D中的某一项(−1)��1�1�2�2...����(−1)ta1q1​​a2q2​​...anqn​​与之对应   说明,D与D1中的任意一项都可以一一对应

可以得到�=�1D=D1​

所以

∑(−1)��1�1�2�2...����=∑(−1)���11��22...����∑(−1)ta1p1​​a2p2​​...anpn​​=∑(−1)tap1​1​ap2​2​...apn​n​

结语

说明:

  • 参考于 课本《线性代数》第五版 同济大学数学系编
  • 配合书中概念讲解 结合了自己的一些理解及思考

文章仅作为学习笔记,记录从0到1的一个过程

希望对您有所帮助,如有错误欢迎小伙伴指正~

我是 海轰ଘ(੭ˊᵕˋ)੭

如果您觉得写得可以的话,请点个赞吧

您的鼓励是海轰更新文章的动力源泉

谢谢支持 ❤️

本文出自【机器学习|数学基础】Mathematics for Machine Learning系列之线性代数(2):n阶行列式、对换 - 掘金仅作学习笔记,如有见解请联系

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值