学习笔记——GB/T 34960.5-2018 信息技术服务 治理 第5部分:数据治理规范

2018-06-07发布,2019-01-01实施

为了促进组织有效、高效、合理地利用数据,有必要在数据获取、存储、整合、分析、应用呈现、归档和销毁过程中,提出数据治理的相关规范,从而实现运营合规、风险可控和价值实现的目标。

一、术语
1.数据治理:数据资源及其应用过程中相关管控活动、绩效和风险管理的集合。
2.数据管理:数据资源获取、控制、价值提升等活动的集合。
3.数据资产:组织拥有和控制的、能够产生效益的数据资源。
4.数据战略:组织开展数据工作的愿景和高阶指引。
5.数据架构:数据要素、结构和接口等抽象及其相互关系的框架。

二、总则
1.目标:运营合规、风险可控、价值实现。
2.任务:评估现状及需求、环节、资源管理和资产运营能力;指导体系构建、治理域的建立和实施落地;制定评价体系和审计规范,监督数据治理内控、合规和绩效。

三、框架
1.顶层设计
2.环境
3.治理域
4,治理过程

四、顶层设计
1.战略规划:与业务、信息技术规划协调一致;制定数据战略规划;指导方案建立;明确各项要求。
2.组织构建:建立组织机构和机制;明确决策和实施机构;建立授权、决策和沟通机制;实现各项功能。
3.架构设计:建立数据架构,明确技术方向、管理策略和支撑体系;评估。

五、数据治理环境
1.内外部环境:分析业务、市场和利益相关方需求,适应内外部环境变化。
2.促成因素:获得支持;提升人员能力;开展技术研发和创新;制定制度;营造文化;评估能力。

六、数据治理域
1.数据管理体系:围绕数据标准、数据质量、数据安全、元数据管理和数据生存周期等,开展治理。评估、指导、监督。
2.数据价值体系:围绕数据流通、数据服务和数据洞察等,开展治理。评估、指导、监督。

七、数据治理过程
1.统筹和规划
2.构建和运行
3.监控和评价
4.改进和优化

八、数据管理体系的治理规范
1.数据标准:明确数据标准的内涵和范围,建立数据标准体系及其管理机制,以支撑数据的标准化建设,保障数据在应用过程中的一致性。
1)明确数据标准的内涵和范围,制定通用的数据规范,包括数据分类、数据类型、数据格式、编码规则等,保证数据应用过程的一致性。
2)方案计划
3)机构和机制
4)制定管理制度
5)评估更新
2.数据质量:指定数据质量管理目标,建立管理体系和实施机制,优化并持续改进。
1)分类管理,制定目标。
2)定义角色和职责,建立管理办法。
3)识别数据生存周期各个阶段的数据质量关键因素,构建数据质量评估框架,包括准确性、完整性、一致性、可访问性、及时性、相关性和可信度等。
4)采用定性评估、定量评估、综合评估等方法,评估和持续优化数据质量。
3.数据安全
1)目标、方针、策略
2)机构、角色、能力
3)规范、机制
4)视图、识别
5)审计、评估、监督、优化
4.元数据管理:明确范围和优先级、建立策略和流程,开展元数据创建、存储、整合和控制等。
1)明确元数据的管理范围,构建元数据库。
2)建立完整的数据字典、模型、架构及其管理体系。
3)建立管理机制
4)建立创建、维护、整合、存储、分发、查询、报告和分析机制。
5)建立质量标准和评估指标,开展绩效评估并持续改进。
5,数据生存周期
1)识别现状
2)识别各个阶段
3)确保各阶段数据保密性、完整性和可用性。
4)确保合法合规

九、数据价值体系的治理规范
1.数据流通
1)识别数据资产
2)明确可流通数据及方式
3)确保准确性、可用性、安全性和保密性
4)保证安全
5)保证可追溯
6)确保合法合规
2.数据服务
1)明确数据服务内涵、范围、类型、团队和服务方式
2)制定目录、协议、方法
3)建立管控流程,对实施过程进行审核和控制
4)建立支持流程
5)构建服务管理机制
6)开展服务能力评价
3.数据洞察
1)建模
2)开展规律性、交互性、关联性分析
3)挖掘规律
4)持续改进和优化流程、提高能力和价值
5)确保合法合规

已标记关键词 清除标记
相关推荐
©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页