1982年,生物物理学家J.Hopfield提出了一种新颖的人工神经网络模型——Hopfield网络模型,引入了能量函数的概念,是一个非线性动力学系统。
(1) 离散的Hopfield网络用于联想记忆
(2) 连续的Hopfield网络用于求解最优化问题
1. 离散型Hopfield神经网络
能量函数:
能量函数E按照迭代一定会下降(证明我一直卡在一个地方,后来发现xi改变了,不仅改变了该节点的能量,而且对其它节点也有影响,故把证明贴上来,免得自己忘记)
证明:
无论x从-1变到1还是从1变到-1,能量都是下降的。
特点:结点输出为-1或+1
用途:联想记忆(自联想,互联想)
(1) 先训练出权值w<

Hopfield神经网络由J.Hopfield在1982年提出,分为离散型和连续型。离散型网络主要用于联想记忆,通过迭代更新寻找稳定状态。连续型网络则应用于最优化问题的求解,如旅行商问题。虽然网络可能陷入局部最小值,但可通过引入模拟退火等方法进行改进。
最低0.47元/天 解锁文章
2600

被折叠的 条评论
为什么被折叠?



