pat甲级1101. Quick Sort (25)、乙级1045. 快速排序(25)

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/richenyunqi/article/details/79523867

欢迎访问我的pat甲级题解目录哦https://blog.csdn.net/richenyunqi/article/details/79958195

欢迎访问我的pat乙级题解目录哦https://blog.csdn.net/richenyunqi/article/details/79953518

甲级1101. Quick Sort (25)

时间限制
200 ms
内存限制
65536 kB
代码长度限制
16000 B
判题程序
Standard
作者
CAO, Peng

There is a classical process named partition in the famous quick sort algorithm. In this process we typically choose one element as the pivot. Then the elements less than the pivot are moved to its left and those larger than the pivot to its right. Given N distinct positive integers after a run of partition, could you tell how many elements could be the selected pivot for this partition?

For example, given N = 5 and the numbers 1, 3, 2, 4, and 5. We have:

1 could be the pivot since there is no element to its left and all the elements to its right are larger than it;
3 must not be the pivot since although all the elements to its left are smaller, the number 2 to its right is less than it as well;
2 must not be the pivot since although all the elements to its right are larger, the number 3 to its left is larger than it as well;
and for the similar reason, 4 and 5 could also be the pivot.

Hence in total there are 3 pivot candidates.

Input Specification:

Each input file contains one test case. For each case, the first line gives a positive integer N (<= 105). Then the next line contains N distinct positive integers no larger than 109. The numbers in a line are separated by spaces.

Output Specification:

For each test case, output in the first line the number of pivot candidates. Then in the next line print these candidates in increasing order. There must be exactly 1 space between two adjacent numbers, and no extra space at the end of each line.

Sample Input:
5
1 3 2 4 5
Sample Output:
3
1 4 5

乙级1045. 快速排序(25)

时间限制
200 ms
内存限制
65536 kB
代码长度限制
8000 B
判题程序
Standard
作者
CAO, Peng

著名的快速排序算法里有一个经典的划分过程:我们通常采用某种方法取一个元素作为主元,通过交换,把比主元小的元素放到它的左边,比主元大的元素放到它的右边。 给定划分后的N个互不相同的正整数的排列,请问有多少个元素可能是划分前选取的主元?

例如给定N = 5, 排列是1、3、2、4、5。则:

1的左边没有元素,右边的元素都比它大,所以它可能是主元;
尽管3的左边元素都比它小,但是它右边的2它小,所以它不能是主元;
尽管2的右边元素都比它大,但其左边的3比它大,所以它不能是主元;
类似原因,4和5都可能是主元。

因此,有3个元素可能是主元。

输入格式:

输入在第1行中给出一个正整数N(<= 105); 第2行是空格分隔的N个不同的正整数,每个数不超过109

输出格式:

在第1行中输出有可能是主元的元素个数;在第2行中按递增顺序输出这些元素,其间以1个空格分隔,行末不得有多余空格。

输入样例:
5
1 3 2 4 5
输出样例:
3
1 4 5

算法设计:

题目要求统计出在一个序列A中左侧数都大,比右侧数都小所有的数。可以定义两个辅助数组leftMax和rightMin,表示存储相应位置处左侧位置的最小值,右侧位置的最大值。同时遍历这三个数组,如果序列A在位置 i 处的元素A[i]>leftMax[i]&&A[i]<rightMin[i],那么A[i]即为主元。遍历完成后所有主元就都可以找到了

注意点:

(1)只使用暴力搜索会超时

(2)如果没有主元,在输出0之后还要输出一个空行,否则会有一个测试点不能通过

(3)虽然题目要求按递增顺序输出,但并不需要再按递增顺序进行一次排序。因为按照主元性质,左侧主元一定比右侧主元小,所以只要按照序列中的顺序输出主元,主元本身就是按照递增顺序排序好的。

c++代码:

#include<bits/stdc++.h>
using namespace std;
int main(){
    int N;
    scanf("%d",&N);
    int a[N],leftMax[N]={0},rightMin[N]={0};//定义存储序列的数组,存储相应位置左侧最大值的数组,存储相应位置右侧最小值的数组
    rightMin[N-1]=INT_MAX;
    for(int i=0;i<N;++i)
        scanf("%d",&a[i]);
    for(int i=1;i<N;++i)//遍历查找相应位置左侧最大值
        leftMax[i]=max(leftMax[i-1],a[i-1]);
    for(int i=N-2;i>=0;--i)//遍历查找相应位置右侧最小值
        rightMin[i]=min(rightMin[i+1],a[i+1]);
    vector<int>result;//存储主元的vector
    for(int i=0;i<N;++i)//查找主元
        if(a[i]>leftMax[i]&&a[i]<rightMin[i])
            result.push_back(a[i]);
    printf("%d\n",result.size());
    //下面的排序语句可有可无
    //    sort(a,a+N,[](const int n1,const int n2){
    //        return n1>n2;
    //    });
    if(result.size()==0)//如果没有这样的主元,输出一个空行
        printf("\n");
    else
        for(int i=0;i<result.size();++i){
            if(i>0)
                printf(" ");
            printf("%d",result[i]);
        }
    return 0;
}

阅读更多

扫码向博主提问

日沉云起

用最短的代码,写最快的算法
  • 擅长领域:
  • 算法
去开通我的Chat快问
换一批

没有更多推荐了,返回首页