pat甲级1143. Lowest Common Ancestor (30)

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/richenyunqi/article/details/79839484

欢迎访问我的pat甲级题解目录哦https://blog.csdn.net/richenyunqi/article/details/79958195

1143. Lowest Common Ancestor (30)

时间限制
200 ms
内存限制
65536 kB
代码长度限制
16000 B
判题程序
Standard
作者
CHEN, Yue

The lowest common ancestor (LCA) of two nodes U and V in a tree is the deepest node that has both U and V as descendants.

A binary search tree (BST) is recursively defined as a binary tree which has the following properties:

  • The left subtree of a node contains only nodes with keys less than the node's key.
  • The right subtree of a node contains only nodes with keys greater than or equal to the node's key.
  • Both the left and right subtrees must also be binary search trees.

Given any two nodes in a BST, you are supposed to find their LCA.

Input Specification:

Each input file contains one test case. For each case, the first line gives two positive integers: M (<= 1000), the number of pairs of nodes to be tested; and N (<= 10000), the number of keys in the BST, respectively. In the second line, N distinct integers are given as the preorder traversal sequence of the BST. Then M lines follow, each contains a pair of integer keys U and V. All the keys are in the range of int.

Output Specification:

For each given pair of U and V, print in a line "LCA of U and V is A." if the LCA is found and A is the key. But if A is one of U and V, print "X is an ancestor of Y." where X is A and Y is the other node. If U or V is not found in the BST, print in a line "ERROR: U is not found." or "ERROR: V is not found." or "ERROR: U and V are not found.".

Sample Input:
6 8
6 3 1 2 5 4 8 7
2 5
8 7
1 9
12 -3
0 8
99 99
Sample Output:
LCA of 2 and 5 is 3.
8 is an ancestor of 7.
ERROR: 9 is not found.
ERROR: 12 and -3 are not found.
ERROR: 0 is not found.
ERROR: 99 and 99 are not found.

在此推荐一下柳诺小姐姐的解法https://www.liuchuo.net/archives/4616,比我的代码更简洁,而且算法更快。在这只记录一下我自己复杂的解法,就不做过多解释了。

c++代码:

#include <bits/stdc++.h>
using namespace std;
const int INF=1e4+5;
int pre[INF],in[INF],father[INF],depth[INF];
void createTree(int root,int left,int right,int Depth,int Father){
    if(left>right)
        return;
    int i=0;
    while(in[i]!=pre[root])
        ++i;
    father[i]=Father;
    depth[i]=Depth;
    createTree(root+1,left,i-1,Depth+1,i);
    createTree(root+1+i-left,i+1,right,Depth+1,i);
}
int main(){
    int M,N;
    scanf("%d%d",&M,&N);
    for(int i=0;i<N;++i){
        scanf("%d",&pre[i]);
        in[i]=pre[i];
    }
    sort(in,in+N);
    createTree(0,0,N-1,1,INT_MAX);
    while(M--){
        int a,b;
        scanf("%d%d",&a,&b);
        int f1=lower_bound(in,in+N,a)-in,f2=lower_bound(in,in+N,b)-in;
        if((f1==N||in[f1]!=a)&&(f2==N||in[f2]!=b))
            printf("ERROR: %d and %d are not found.\n",a,b);
        else if(f1==N||in[f1]!=a)
            printf("ERROR: %d is not found.\n",a);
        else if(f2==N||in[f2]!=b)
            printf("ERROR: %d is not found.\n",b);
        else{
            if(depth[f1]<depth[f2])
                swap(f1,f2);
            while(depth[f1]!=depth[f2])
                f1=father[f1];
            if(in[f1]==in[f2])
                printf("%d is an ancestor of %d.\n",in[f2],in[f2]==a?b:a);
            else{
                while(in[f1]!=in[f2]){
                    f1=father[f1];
                    f2=father[f2];
                }
                printf("LCA of %d and %d is %d.\n",a,b,in[f1]);
            }
        }
    }
    return 0;
}
阅读更多

扫码向博主提问

日沉云起

用最短的代码,写最快的算法
  • 擅长领域:
  • 算法
去开通我的Chat快问
换一批

没有更多推荐了,返回首页