Robberies http://acm.hdu.edu.cn/showproblem.php?pid=2955
背包;第一次做的时候把概率当做背包(放大100000倍化为整数):在此范围内最多能抢多少钱 最脑残的是把总的概率以为是抢N家银行的概率之和… 把状态转移方程写成了f[j]=max{f[j],f[j-q[i].v]+q[i].money}(f[j]表示在概率j之下能抢的大洋);
正确的方程是:f[j]=max(f[j],f[j-q[i].money]*q[i].v) 其中,f[j]表示抢j块大洋的最大的逃脱概率,条件是f[j-q[i].money]可达,也就是之前抢劫过;
始化为:f[0]=1,其余初始化为-1 (抢0块大洋肯定不被抓嘛)
最大报销额 http://acm.hdu.edu.cn/showproblem.php?pid=1864
又一个背包问题,对于每张发票,要么报销,要么不报销,0-1背包,张数即为背包;
转移方程:f[j]=max(f[j],f[j-1]+v[i]);
恶心地方:有这样的输入数据 3 A:100 A:200 A:300
最大连续子序列 http://acm.hdu.edu.cn/showproblem.php?pid=1231
状态方程:sum[i]=max(sum[i-1]+a[i],a[i]);最后从头到尾扫一边
也可以写成:
Max=a[0];
Current=0;
for(i=0;i<n;i++)
{
if(Current<0)
Current=a[i];
else
Current+=a[i];
if(Current>Max)
Max=Current;
}
max sum http://acm.hdu.edu.cn/showproblem.php?pid=1003
同上,最大连续子序列
Largest Rectangle http://acm.hdu.edu.cn/showproblem.php?pid=1506
对于每一块木板,Area=height[i]*(j-k+1) 其中,j<=x<=k,height[x]>=height[i];找j,k成为关键,一般方法肯定超时,利用动态规划,如果它左边高度大于等于它本身,那么它左边的左边界一定满足这个性质,再从这个边界的左边迭代下去 for(i=1;i<=n;i++)
{
while(a[l[i]-1]>=a[i])
l[i]=l[l[i]-1];
}
for(i=n;i>=1;i–)
{
while(a[r[i]+1]>=a[i])
r[i]=r[r[i]+1];
}
City Game http://acm.hdu.edu.cn/showproblem.php?pid=1505
1506的加强版,把2维转换化成以每一行底,组成的最大面积;(注意处理连续与间断的情况);
Bone Collector http://acm.hdu.edu.cn/showproblem.php?pid=2602
简单0-1背包,状态方程:f[j]=max(f[j],f[j-v[i]]+w[i])
Super Jumping http://acm.hdu.edu.cn/showproblem.php?pid=1087
最大递增子段和,状态方程:sum[j]=max{sum[i]}+a[j]; 其中,0<=i<=j,a[i]<a[j]
命运http://acm.hdu.edu.cn/showproblem.php?pid=2571
状态方程:sum[i][j]=max{sum[i-1][j],sum[i][k]}+v[i][j];其中1<=k<=j-1,且k是j的因子
Monkey And Banana http://acm.hdu.edu.cn/showproblem.php?pid=1069
状态方程:f[j]=max{f[i]}+v[j];其中,0<=i<=j,w[i]<w[j],h[i]<h[j]
Big Event in HDU http://acm.hdu.edu.cn/showproblem.php?pid=1171
一维背包,逐个考虑每个物品带来的影响,对于第i个物品:if(f[j-v[i]]==0) f[j]=0;
其中,j为逆序循环,且j>=v[i]
数塔http://acm.hdu.edu.cn/showproblem.php?pid=2084
自底向上:dp[i][j]=max(dp[i+1][j],dp[i+1][j+1])+v[i][j];
免费馅饼http://acm.hdu.edu.cn/showproblem.php?pid=1176
简单数塔
自底向上计算:dp[i][j]=max(dp[i+1][j-1],dp[i+1][j],dp[i+1][j+1])+v[i][j];处理边界
I Need A Offer http://acm.hdu.edu.cn/showproblem.php?pid=1203
简单0-1背包,题目要求的是至少收到一份Offer的最大概率,我们得到得不到的最小概率即可,状态转移方程:f[j]=min(f[j],f[j-v[i]]*w[i]);其中,w[i]表示得不到的概率,(1-f[j])为花费j元得到Offer的最大概率
FATE http://acm.hdu.edu.cn/showproblem.php?pid=2159
二维完全背包,第二层跟第三层的要顺序循环;(0-1背包逆序循环);状态可理解为,在背包属性为 {m(忍耐度), s(杀怪个数)} 里最多能得到的经验值,之前的背包牺牲体积,这个背包牺牲忍耐度跟个数
注意: 最后扫的时候 外层循环为忍耐度,内层循环为杀怪个数,因为题目要求出剩余忍耐度最大,没有约束杀怪个数,一旦找到经验加满的即为最优解;
状态转移方程为: f[j][k]=max(f[j][k],f[j-v[i]][k-1]+w[i]); w[i]表示杀死第i个怪所得的经验值,v[i]表示消耗的忍耐度
How To Type http://acm.hdu.edu.cn/showproblem.php?pid=2577
用两个a,b数组分别记录Caps Lock开与关时打印第i个字母的最少操作步骤;
而对于第i个字母的大小写还要分开讨论:
Ch[i]为小写: a[i]=min(a[i-1]+1,b[i-1]+2);不开灯直接字母,开灯则先关灯再按字母,最后保持不开灯; b[i]=min(a[i-1]+2,b[i-1]+2);不开灯则先按字母再开灯,开灯则Shift+字母(比关灯,按字母再开灯节省步数),最后保持开灯;
Ch[i]为大写: a[i]=min(a[i-1]+2,b[i-1]+2); b[i]=min(a[i-1]+2,b[i-1]+1)
最后,b[len-1]++,关灯嘛O(∩_∩)O~
Coins http://acm.hdu.edu.cn/showproblem.php?pid=2844
类似于HDU1171 Big Event In HDU,一维DP,可达可不达
Beans http://acm.hdu.edu.cn/showproblem.php?pid=2845
横竖分别求一下不连续的最大子段和;
状态方程: Sum[i]=max(sum[j])+a[i];其中,0<=j<i-1;
Largest Submatrix http://acm.hdu.edu.cn/showproblem.php?pid=2870
枚举a,b,c 最大完全子矩阵,类似于HDU1505 1506
Matrix Swapping II http://acm.hdu.edu.cn/showproblem.php?pid=2830
最大完全子矩阵,以第i行为底,可以构成的最大矩阵,因为该题可以任意移动列,所以只要大于等于height[i]的都可以移动到一起,求出height>=height[i]的个数即可,这里用hash+滚动,先求出height[i]出现的次数,然后逆序扫一遍hash[i]+=hash[i+1];
最少拦截系统http://acm.hdu.edu.cn/showproblem.php?pid=1257
两种做法,一是贪心,从后往前贪;二是DP;
if(v[i]>max{dp[j]}) (0<=j<len)
dp[len++]=v[i];
Common Subsequence http://acm.hdu.edu.cn/showproblem.php?pid=1159
经典DP,最长公共子序列
Len[i][j]={len[i-1][j-1]+1,(a[i]==b[j]); max(len[i-1][j],len[i][j-1])}
初始化的优化:
for(i=0;i<a;i++)
for(j=0;j<b;j++)
len[i][j]=0;
for(i=1;i<=a;i++)
for(j=1;j<=b;j++)
if(ch1[i-1]==ch2[j-1])
len[i][j]=len[i-1][j-1]+1;
else
len[i][j]=max(len[i-1][j],len[i][j-1]);
★ 搬寝室http://acm.hdu.edu.cn/showproblem.php?pid=1421
状态Dp[i][j]为前i件物品选j对的最优解
当i=j*2时,只有一种选择即 Dp[i-2][j-1]+(w[i]-w[i-1])^2
当i>j*2时,Dp[i][j] = min(Dp[i-1][j],Dp[i-2][j-1]+(w[j]-w[j-1])^2)
★ Humble Numbers http://acm.hdu.edu.cn/showproblem.php?pid=1058
如果一个数是Humble Number,那么它的2倍,3倍,5倍,7倍仍然是Humble Number
定义F[i]为第i个Humble Number
F[n]=min(2*f[i],3*f[j],5*f[k],7*f[L]), i,j,k,L在被选择后相互移动
(通过此题理解到数组有序特性)
★ Doing Homework Again http://acm.hdu.edu.cn/showproblem.php?pid=1789
这题为贪心,经典题;
切题角度,对于每个任务要么在截至日期前完成要么被扣分;所以考虑每个人物的完成情况即可;由于每天只能完成一个任务,所以优先考虑分值较大的任务,看看该任务能不能完成,只要能完成,即使提前完成,占了其他任务的完成日期也没关系,因为当前任务的分值最大嘛,而对于能完成的任务能拖多久就拖多久,以便腾出更多时间完成其他任务;
How Many Ways http://acm.hdu.edu.cn/showproblem.php?pid=1978
两种D法,一是对于当前的点,那些点可达;二是当前点可达那些点;
明显第二种方法高,因为第一种方法有一些没必要的尝试;
Dp[i][j]+=Dp[ii][jj]; (map[ii][jj]>=两点的曼哈顿距离)
值得优化的地方,每两点的曼哈顿距离可能不止求一次,所以预处理一下直接读取
珍惜现在 感恩生活http://acm.hdu.edu.cn/showproblem.php?pid=2191
每个物品最多可取n件,多重背包;
利用二进制思想,把每种物品转化为几件物品,然后就成为了0-1背包
Piggy-Bank http://acm.hdu.edu.cn/showproblem.php?pid=1114
完全背包;常规背包是求最大值,这题求最小值;
只需要修改一下初始化,f[0]=0,其他赋值为+∞即可;
状态转移方程:f[i][V]=max{f[i-1][V],f[i-1][V-k*v[i]]+k*w[i]},其中0<=k*v[i]<=V
★ Max Sum Plus Plus http://acm.hdu.edu.cn/showproblem.php?pid=1024
1. 对于前n个数, 以v[n]为底取m段:
当n==m时,Sum[m][n]=Sum[m-1][n-1]+v[n],第n个数独立成段;
当n>m时, Sum[m][n]=max{Sum[m-1][k],Sum[m][n-1]}+v[n]; 其中,m-1<=k<j,解释为,v[n]要么加在Sum[m][n-1],段数不变,要么独立成段接在前n-1个数取m-1段所能构成的最大值后面
2. 空间的优化:
通过状态方程可以看出,取m段时,只与取m-1段有关,所以用滚动数组来节省空间
FatMouse’s Speed http://acm.hdu.edu.cn/showproblem.php?pid=1160
要求:体重严格递增,速度严格递减,原始顺序不定
按体重或者速度排序,即顺数固定后转化为最长上升子序列问题
Dp[i]表示为以第i项为底构成的最长子序列,Dp[i]=max(dp[j])+1,其中0<=j<i , w[i]>w[j]&&s[i]<s[j] 用一个index数组构造最优解:记录每一项接在哪一项后面,最后用max找出最大的dp[0…n],dex记录下标,回溯输出即可
Cstructing Roads http://acm.hdu.edu.cn/showproblem.php?pid=1025
以p或者r按升序排列以后,问题转化为最长上升子序列
题目数据量比较大,只能采取二分查找,n*log(n)的算法
用一个数组记录dp[]记录最长的子序列,len表示长度,如果a[i]>dp[len], 则接在后面,len++; 否则在dp[]中找到最大的j,满足dp[j]<a[i],把a[i]接在dp[j]后面;
FatMouse Chees http://acm.hdu.edu.cn/showproblem.php?pid=1078
Dp思想,用记忆化搜索;简单题,处理好边界;
To the Max http://acm.hdu.edu.cn/showproblem.php?pid=1081
最大子矩阵
把多维转化为一维的最大连续子序列;(HDU1003)
龟兔赛跑http://acm.hdu.edu.cn/showproblem.php?pid=2059
未总结
★ Employment Planning http://acm.hdu.edu.cn/showproblem.php?pid=1158
状态表示: Dp[i][j]为前i个月的留j个人的最优解;Num[i]<=j<=Max{Num[i]};
j>Max{Num[i]}之后无意义,无谓的浪费 记Max_n=Max{Num[i]};
Dp[i-1]中的每一项都可能影响到Dp[i],即使Num[i-1]<<Num[i]
所以利用Dp[i-1]中的所有项去求Dp[i];
对于Num[i]<=k<=Max_n, 当k<j时, 招聘;
当k>j时, 解雇 然后求出最小值
Dp[i][j]=min{Dp[i-1][k…Max_n]+(招聘,解雇,工资);
Dividing http://acm.hdu.edu.cn/showproblem.php?pid=1059
一维Dp Sum为偶数的时候判断Dp[sum/2]可不可达
Human Gene Factions http://acm.hdu.edu.cn/showproblem.php?pid=1080
状态转移方程:
f[i][j]=Max(f[i-1][j-1]+r[a[i]][b[j]], f[i][j-1]+r[‘-‘][b[j]],f[i-1][j]+r[a[i]][‘-‘]);Pearls
http://acm.hdu.edu.cn/showproblem.php?pid=1300
Dp[i]=min{Dp[j]+V}, 0<=j<i, V为第j+1类珠宝到第i类全部以i类买入的价值;
Zipper http://acm.hdu.edu.cn/showproblem.php?pid=1501
Dp[i][j]=
★Fast Food http://acm.hdu.edu.cn/showproblem.php?pid=1227
这里需要一个常识:在i到j取一点使它到区间每一点的距离之和最小,这一点为(i+j)/2用图形即可证明;
Dp[i][j]=max{Dp[i-1][k]+cost[k+1][j] 其中,(i-1)<=k<j状态为前j个position建i个depots
Warcraft http://acm.hdu.edu.cn/showproblem.php?pid=3008
比赛的时候这道DP卡到我网络中心停电!!! 卧槽~
因为你没有回血效应,所以你挂掉的时间是一定的;
用Dp[i][j]表示第i秒剩余j个单位的MP时怪物所剩的血量; 注意必须是剩余,也就是说,初始化的时候,DP[0][100]=100; 其他Dp[0]状态都不合法,因为没有开战的时候你的MP是满的
以前的Dp都是利用前面得到的最优解来解决,而这题的麻烦点是MP在攻击过后要自动恢复x个单位;用当前的状态的状态推下一状态,仔细想想也未尝不可;状态转移方程为:
Dp[i+1][j-sk[k].mp+x]=min(Dp[i+1][j-sk[k].mp+x],Dp[i][j]+sk[k].at; 释放第K种技能,物理攻击可以看成是at=1,mp=0 的魔法;
Regular Words http://acm.hdu.edu.cn/showproblem.php?pid=1502
F[a][b][c]=F[a-1][b][c]+F[a][b-1][c]+F[a][b][c-1];
a>=b>=c;
Advanced Fruits http://acm.hdu.edu.cn/showproblem.php?pid=1503
最长公共子序列的加强版
★ Doing Homework http://acm.hdu.edu.cn/showproblem.php?pid=1074
这题用到位压缩;
那么任务所有的状态有2^n-1种
状态方程为:Dp[next]=min{Dp[k]+i的罚时} 其中,next=k+(1<<i),k要取完满足条件的值 k>>i的奇偶性决定状态k
具体实现为: 对每种状态遍历n项任务,如果第i项没有完成,则计算出Dp[next]的最优解
Free DIY Tour http://acm.hdu.edu.cn/showproblem.php?pid=1224
简单的数塔Dp,考察的是细节的处理;
Dp[i]=Max{Dp[j]}+v[i] 其中j->i为通路;
v[n+1]有没有初始化,Dp数组有没有初始化
这题不能用想当然的”最长路”来解决,这好像是个NP问题 解决不了的
重温世界杯http://acm.hdu.edu.cn/showproblem.php?pid=1422
这题的状态不难理解,状态表示为,如果上一个城市剩下的钱不为负,也就是没有被赶回杭电,则再考虑它对下一个城市的影响;如果上一个城市剩下的前加上当前城市的前大于当前城市的生活费,那么Dp[i]=Dp[i-1]+1;
值得注意的而是这题的数据为100000;不可能以每个城市为起点来一次Dp,时间复杂度为n^2;足已超时;
我是这样处理的,在保存的数据后面再接上1…n的数据,这样扫描一遍的复杂度为n;再加一个优化,当Dp[i]==
n时,也就是能全部游完所有城市的时候,直接break;
本文来自CSDN博客,转载请标明出处:http://blog.csdn.net/qishibo1990/archive/2010/04/25/5527736.aspx