Trapping Rain Water

问题描述

Given n non-negative integers representing an elevation map where the width of each bar is 1, compute how much water it is able to trap after raining.

For example,
Given [0,1,0,2,1,0,1,3,2,1,2,1], return 6.
alt text
he above elevation map is represented by array [0,1,0,2,1,0,1,3,2,1,2,1]. In this case, 6 units of rain water (blue section) are being trapped. Thanks Marcos for contributing this image!

思考 :如何存水

想法:

  • 1、Here is my idea: instead of calculating area by height*width, we can think it in a cumulative way. In other words, sum water amount of each bin(width=1). Search from left to right and maintain a max height of left and right separately, which is like a one-side wall of partial container. Fix the higher one and flow water from the lower part. For example, if current height of left is lower, we fill water in the left bin. Until left meets right, we filled the whole container.

  • 2、Basically this solution runs two pointers from two sides to the middle, and the plank is used to record the height of the elevation within a certain range, plank height can only increase (or remain the same) from two sides to the middle. If the current pointer is pointing at a number that is less than the current plank height, the difference between plank height and the number would be the amount of water trapped. Otherwise, A[i] == plank, no water is trapped.

代码

class Solution {
public:
    int trap(int A[], int n) {

        int i = 0, j = n - 1, blank = 0, re = 0;

        while(i < j){

            blank = blank < min(A[i],A[j])? min(A[i],A[j]): blank;
            re += blank - (A[i] < A[j]? A[i++]: A[j--]);

        }

        return re;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值