问题描述
Given n non-negative integers representing an elevation map where the width of each bar is 1, compute how much water it is able to trap after raining.
For example,
Given [0,1,0,2,1,0,1,3,2,1,2,1], return 6.
he above elevation map is represented by array [0,1,0,2,1,0,1,3,2,1,2,1]. In this case, 6 units of rain water (blue section) are being trapped. Thanks Marcos for contributing this image!
思考 :如何存水
想法:
1、Here is my idea: instead of calculating area by height*width, we can think it in a cumulative way. In other words, sum water amount of each bin(width=1). Search from left to right and maintain a max height of left and right separately, which is like a one-side wall of partial container. Fix the higher one and flow water from the lower part. For example, if current height of left is lower, we fill water in the left bin. Until left meets right, we filled the whole container.
2、Basically this solution runs two pointers from two sides to the middle, and the plank is used to record the height of the elevation within a certain range, plank height can only increase (or remain the same) from two sides to the middle. If the current pointer is pointing at a number that is less than the current plank height, the difference between plank height and the number would be the amount of water trapped. Otherwise, A[i] == plank, no water is trapped.
代码
class Solution {
public:
int trap(int A[], int n) {
int i = 0, j = n - 1, blank = 0, re = 0;
while(i < j){
blank = blank < min(A[i],A[j])? min(A[i],A[j]): blank;
re += blank - (A[i] < A[j]? A[i++]: A[j--]);
}
return re;
}
};