线性代数从零开始详解笔记【特征值特征向量】

特征值和特征向量

0. 引言

前提:A是n阶方阵
A α = R α A\alpha=R\alpha Aα=Rα
我们称R是特征值,称 α \alpha α是特征向量。从字面意思来描述的话,矩阵本身是个数表,一旦发生乘法,他就是一个变换。所以,等式左边对一个向量做一个变换等于对一个向量直接R倍的拉伸。换个说法,对一个向量进行变换,向量的方向不会发生改变。

特征值和特征向量:
一个是伸缩系数,一个是变换方向。

对于任何一个矩阵我们都可以用特征值和特征向量对他进行标识,这样对于 “矩阵是一个变换” 的描述就更清晰了。

1. 特值,特量

(上面都是简称)
需要注意的是:特量不能是0向量,但特量可以是0。

我们必须牢记公式 A a = λ a Aa=\lambda a Aa=λa,根据这个公式变形:
λ a − A a = 0 \lambda a-Aa=0 λaAa=0
( λ E − A ) a = 0 (\lambda E-A)a=0 (λEA)a=0

假如我们把上面的等式看成 ( λ E − A ) X = 0 (\lambda E-A)X=0 (λEA)X=0

那么,这个是齐次方程组,因为特量不能是0向量,也就说这个方程组不能只有零解,要想有非零解,就必须满足他的系数行列式 ∣ λ E − A ∣ = 0 |\lambda E-A|=0 λEA=0(不可逆)

前提 ∣ λ E − A ∣ = 0 |\lambda E-A|=0 λEA=0 非常重要,是我们研究特值和特量的基础。

1.1 一特值多特量

一个特值 → \rightarrow 多个特量。
但一个特量 → \rightarrow 一个特值

证明:
假如一个特量 → \rightarrow 多个特值。
( λ 1 − λ 2 ) a = 0 (\lambda_1-\lambda_2)a=0 (λ1λ2)a=0

假如 λ 1 ≠ λ 2 , a = 0 \lambda_1\neq\lambda_2,a=0 λ1=λ2a=0 特量不能是0向量,矛盾。

根据推论有:
假如 a 1 , a 2 a_1,a_2 a1a2 λ \lambda λ的特量, c 1 a 1 + c 2 a 2 c_1a_1+c_2a_2 c1a1+c2a2也是 λ \lambda λ的特量

证明:
A ( c 1 a 1 + c 2 a 2 ) = c 1 A a 1 + c 2 A a 2 = c 1 λ a 1 + c 2 λ a 2 = λ ( c 1 a 1 + c 2 a 2 ) A(c_1a_1+c_2a_2)=c_1Aa_1+c_2Aa_2=c_1\lambda a_1+c_2\lambda a_2=\lambda (c_1a_1+c_2a_2) A(c1a1+c2a2)=c1Aa1+c2Aa2=c1λa1+c2λa2=λ(c1a1+c2a2)

1.2 求特值和特量

方法:

  • 求特值使解 ∣ λ E − A ∣ = 0 |\lambda E-A|=0 λEA=0 方程
  • 求特量解 ( λ E − A ) a = 0 (\lambda E-A)a=0 (λEA)a=0 齐次方程组

特征向量不唯一
所以,我们最后的计算结果的特量不一定一样,但是特值是一定一样的。

n阶方阵就有n个特值
对于一个方阵而言,特值有多少个?
假如我们对 ∣ λ E − A ∣ = 0 |\lambda E-A|=0 λEA=0完全展开的话是n阶方程,n阶取决于A的阶数,所以,A是n阶,就有n个解,也就是说有n个特值。

例题:(常规求特值和特量)

已知矩阵 A = [ − 1 1 0 − 4 3 0 1 0 2 ] A=\begin{bmatrix}-1&1&0\\-4&3&0\\1&0&2\end{bmatrix} A=141130002,求特值和特量。

解:
任何一个方阵都能标识一个变换,我们对变换进行解码,就是拆分为伸缩系数(特值)和方向(特量)。

求特值和特量用的是 ∣ λ E − A ∣ = 0 |\lambda E-A|=0 λEA=0 我们解这个方程,就能解出 λ \lambda λ

∣ λ E − A ∣ = ∣ λ + 1 − 1 0 4 λ − 3 0 − 1 0 λ − 2 ∣ = 0 |\lambda E-A|=\begin{vmatrix}\lambda+1&-1&0\\4&\lambda-3&0\\-1&0&\lambda-2\end{vmatrix}=0 λEA=λ+1411λ3000λ2=0

如何解?
直接完全展开?脑子瓦特了才会展开。

我们目的要降次,但是我们无法完全展开是个三次方程的事实。

记住下面的经验准则:

  • 尽可能把某些行/列化成0
  • 对行列式提取含未知数的公因子
  • 有…

观察,发现第三列,大部分是0,我们以第三列作为基准进行代数余子式展开。

∣ λ E − A ∣ = ( − 1 ) 3 + 3 ( λ − 2 ) ∣ λ + 1 − 1 4 λ − 3 ∣ = ( λ − 2 ) ( λ − 1 ) 2 |\lambda E-A|=(-1)^{3+3}(\lambda -2)\begin{vmatrix}\lambda+1&-1\\4&\lambda-3\end{vmatrix}=(\lambda-2)(\lambda-1)^2 λEA=(1)3+3(λ2)λ+141λ3=(λ2)(λ1)2

特值有三个解。我们需要逐个讨论求出特量。
求特量用 ( λ E − A ) a = 0 (\lambda E-A)a=0 (λEA)a=0齐次方程组来解 a a a

写出系数矩阵:

( λ E − A ) = [ λ + 1 − 1 0 4 λ − 3 0 − 1 0 λ − 2 ] (\lambda E-A)=\begin{bmatrix}\lambda+1&-1&0\\4&\lambda-3&0\\-1&0&\lambda-2\end{bmatrix} (λEA)=λ+1411λ3000λ2

技巧:此处我们只需要行列式的数据抄过来即可,注意括号不要错就行。

讨论:

需要注意的是,虽然 λ 1 等 于 λ 2 \lambda_1等于\lambda_2 λ1λ2,但是本质上他们是不同的特值,因为A是三阶方阵就一定要有三个特值。

【1】当 λ 1 = λ 2 = 1 , λ 3 = 2 \lambda_1=\lambda_2=1,\lambda_3=2 λ1=λ2=1λ3=2

λ 1 = λ 2 = 1 \lambda_1=\lambda_2=1 λ1=λ2=1
[ 2 − 1 0 4 − 2 0 − 1 0 − 1 ] → [ 1 − 1 / 2 0 0 0 0 0 1 2 ] → [ 1 − 1 / 2 0 0 1 2 0 0 0 ] \begin{bmatrix}2&-1&0\\4&-2&0\\-1&0&-1\end{bmatrix}\rightarrow\begin{bmatrix}1&-1/2&0\\0&0&0\\0&1&2\end{bmatrix}\rightarrow\begin{bmatrix}1&-1/2&0\\0&1&2\\0&0&0\end{bmatrix} 2411200011001/2010021001/210020

{ x 1 − 1 / 2 x 2 = 0 x 2 + 2 x 3 = 0 \begin{cases}x_1-1/2x_2=0\\x2+2x_3=0\end{cases} {x11/2x2=0x2+2x3=0

其中一个解: [ 1 2 − 1 ] \begin{bmatrix}1\\2\\-1\end{bmatrix} 121

λ 3 = 2 \lambda_3=2 λ3=2

[ 3 − 1 0 4 − 1 0 − 1 0 0 ] → [ 1 0 0 0 1 0 0 0 0 ] \begin{bmatrix}3&-1&0\\4&-1&0\\-1&0&0\end{bmatrix}\rightarrow\begin{bmatrix}1&0&0\\0&1&0\\0&0&0\end{bmatrix} 341110000100010000

{ x 1 = 0 x 2 = 0 \begin{cases}x_1=0\\x_2=0\end{cases} {x1=0x2=0

其中一个解: [ 0 0 1 ] \begin{bmatrix}0\\0\\1\end{bmatrix} 001

【2】当 λ 1 = − 1 \lambda_1=-1 λ1=1

类似

例题2:(上三角矩阵的特值和特量计算技巧)

[ 1 2 3 0 4 5 0 0 9 ] \begin{bmatrix}1&2&3\\0&4&5\\0&0&9\end{bmatrix} 100240359的特值?

特值就是主对角线元素:1,4,9。

例题3:(零矩阵的特值和特量)
A = [ 0 0 0 0 0 0 0 0 0 ] A=\begin{bmatrix}0&0&0\\0&0&0\\0&0&0\end{bmatrix} A=000000000的特值和特量。

λ = 0 \lambda=0 λ=0 特量: [ 1 0 0 ] [ 0 1 0 ] [ 0 0 1 ] \begin{bmatrix}1\\0\\0\end{bmatrix}\begin{bmatrix}0\\1\\0\end{bmatrix}\begin{bmatrix}0\\0\\1\end{bmatrix} 100010001

1.3 矩阵性质和特值特量的关系

  • A A A A T A^T AT有相同的特值,但是特量不一定相同。

∣ λ E − A T ∣ = ∣ λ E T − A T ∣ = ∣ ( λ E − A ) T ∣ = λ E − A ∣ |\lambda E-A^T|=|\lambda E^T-A^T|=|(\lambda E -A)^T|=\lambda E-A| λEAT=λETAT=(λEA)T=λEA

  • 特值和主对角线元素关系重要结论【1】 特值之和等于原矩阵A的主对角线元素之和。

∑ n λ i = ∑ n a i i \sum^n\lambda_i=\sum^na_{ii} nλi=naii

需要注意的是,我们有多少个特值?
取决于n阶方阵。

观察我们上面解决的题目,满足这个性质。证明过程省略。

  • 特值和主对角线元素关系重要结论【2】 特值之积等于原矩阵A的行列式值

∏ λ i = ∣ A ∣ \prod \lambda_i=|A| λi=A

这两个重要结论,一般来说,我们优先使用第一个,如果两个都用上了,证明需要搭建这两个方程。

  • 特值对应的多个特量是线性无关的(用于证明题)
    在这里插入图片描述
  • 矩阵的自运算性质和特值的关系
    k λ k\lambda kλ k A kA kA的特值
    ( λ ) n (\lambda)^n (λ)n A n A^n An的特值
    1 λ \frac{1}{\lambda} λ1 A − 1 A^{-1} A1的特值
    1 λ ∣ A ∣ \frac{1}{\lambda}|A| λ1A A ∗ A^{*} A的特值

例如:已知2是A的特值,问 A 5 + 6 A 2 + A + 3 E A^5+6A^2+A+3E A5+6A2+A+3E的特值

可得:
2 5 + 6 ∗ 2 2 + 2 + 3 2^5+6*2^2+2+3 25+622+2+3


例如:问 A ∗ ∗ A^{**} A的特值

替换一下即可:
1 λ ∣ A ∗ ∣ = 1 λ ∣ A ∣ n − 1 \frac{1}{\lambda}|A^*|=\frac{1}{\lambda}|A|^{n-1} λ1A=λ1An1


例题:已知A是四阶方阵,已知: ∣ 3 E + A ∣ = 0 |3E+A|=0 3E+A=0 A A T = 2 E AA^T=2E AAT=2E ∣ A ∣ < 0 |A|<0 A<0,求 A ∗ A^* A的一个特值

列出两个我们熟知的方程:
A α = λ α A\alpha=\lambda\alpha Aα=λα
∣ λ E − A ∣ = 0 |\lambda E-A|=0 λEA=0

我们从第二个方程入手:
∣ ( − 1 ) ( − 3 E − A ) ∣ = 0 |(-1)(-3E-A)|=0 (1)(3EA)=0
( − 1 ) 4 ∣ − 3 E − A ∣ = 0 (-1)^4|-3E-A|=0 (1)43EA=0

所以 A A A的一个特值是 − 3 -3 3

∣ A ∣ ∣ A T ∣ = ∣ 2 E ∣ = 16 |A||A^T|=|2E|=16 AAT=2E=16

∣ A ∣ = 4 |A|=4 A=4

所以 A ∗ A^* A的特值: − 4 3 \frac{-4}{3} 34


例题:上题把条件换成: ∣ E + 2 A ∣ = 0 |E+2A|=0 E+2A=0

解法类似:
∣ ( − 2 ) ( − 1 2 E − A ) ∣ = ( − 2 ) 4 ∣ − 1 2 E − A ∣ |(-2)(-\frac{1}{2}E-A)|=(-2)^4|-\frac{1}{2}E-A| (2)(21EA)=(2)421EA


例题:已知 A = [ 1 − 3 3 3 a 3 6 − 6 b ] A=\begin{bmatrix}1&-3&3\\3&a&3\\6&-6&b\end{bmatrix} A=1363a633b

λ 1 = − 2 , λ 2 = 4 , λ 3 = ? \lambda_1=-2,\lambda_2=4,\lambda_3=? λ1=2,λ2=4,λ3=?

首先,根据主对角线的经验可以得出:
λ 1 + λ 2 + λ 3 = 1 + a + b \lambda_1+\lambda_2+\lambda_3=1+a+b λ1+λ2+λ3=1+a+b

a + b = λ 3 + 1 a+b=\lambda_3+1 a+b=λ3+1

再写一个方程:
∣ − 2 E − A ∣ = 0 |-2E-A|=0 2EA=0

3 ( 5 + a ) ( 4 − b ) = 0 3(5+a)(4-b)=0 3(5+a)(4b)=0

a = − 5 , b = 4 a=-5,b=4 a=5,b=4

λ 3 = − 2 \lambda_3=-2 λ3=2


2. 矩阵之间的关系:等价,相似,对角化

下面我们研究相似矩阵和矩阵对角化,先看什么是相似矩阵,假设, A A A B B B是n阶方阵(考虑相似矩阵,必须是方阵),存在可逆矩阵P,满足:
P − 1 A P = B P^{-1}AP=B P1AP=B,则称 A A A~ B B B

如果矩阵在一条初等变换线上,那么我们称他们是等价的。

如果我们判断相似矩阵,只需根据定义找到 P P P即可。

矩阵的迹:主对角线之和

2.1 相似矩阵的性质

  • 相似矩阵有相同的特值,行列式,相同的迹

有相同的特值怎么整出来的?
A = P − 1 B P A=P^{-1}BP A=P1BP
∣ λ E − A ∣ = ∣ λ E − P − 1 B P ∣ = ∣ λ P − 1 E P − P − 1 B P ∣ = ∣ P − 1 P ∣ ∣ λ E − B ∣ |\lambda E-A|=|\lambda E-P^{-1}BP|=|\lambda P^{-1}EP-P^{-1}BP|=|P^{-1}P||\lambda E-B| λEA=λEP1BP=λP1EPP1BP=P1PλEB

  • 相似矩阵的逆矩阵也相似
    A A A ~ B B B A − 1 A^{-1} A1~ B − 1 B^{-1} B1

A m A^m Am~ B m B^m Bm


例题:已知: A = [ 2       1 1   2 a ] , B = [ 1       3 2   − 1 b ] A=\begin{bmatrix}2&\space&\space\\\space&1&1\\\space&2&a\end{bmatrix},B=\begin{bmatrix}1&\space&\space\\\space&3&2\\\space&-1&b\end{bmatrix} A=2   12 1aB=1   31 2b

问: a , b a,b ab

已知相似性质,可以列出很多方程的啦:

(1) t r ( A ) = t r ( B ) tr(A)=tr(B) tr(A)=tr(B)
(2) ∣ A ∣ = ∣ B ∣ |A|=|B| A=B
(3)均可逆/均不可逆
(4) A − 1 = B − 1 A^{-1}=B^{-1} A1=B1
(5) A m = B m A^m=B^m Am=Bm
(6)特值相同


除了研究两个矩阵的相似,我们还研究某个矩阵和特殊矩阵相似

特别的研究:对角型矩阵(就是只有对角线上有元素)

假如 A A A相似于对角型矩阵,那么 → \rightarrow A A A有n个线性无关的特量

推论: A A A n n n个互异的特值,那么 A A A相似于对角型

举个例子: A A A是六阶方阵,六个个特值分别是吧啦吧啦(单根),那么,他一定相似于对角型

单根: λ 1 = X , λ 2 = Y \lambda_1=X,\lambda_2=Y λ1=X,λ2=Y
重根: λ 1 = λ 2 = X \lambda_1=\lambda_2=X λ1=λ2=X

如果是重根:
看重根的线性无关特量的个数是否等于重数(像上面那个叫二重数)


例题:判断是否相似于对角型:
A = [ 3 2 − 1 − 2 − 2 2 3 6 − 1 ] A=\begin{bmatrix}3&2&-1\\-2&-2&2\\3&6&-1\end{bmatrix} A=323226121


第一步,先求特值
∣ λ E − A ∣ = 0 |\lambda E-A|=0 λEA=0
∣ λ − 3 − 2 1 2 λ + 2 − 2 − 3 − 6 λ + 1 ∣ = 0 \begin{vmatrix}\lambda-3&-2&1\\2&\lambda+2&-2\\-3&-6&\lambda+1\end{vmatrix}=0 λ3232λ+2612λ+1=0

( λ − 2 ) 2 ( λ + 4 ) = 0 (\lambda-2)^2(\lambda+4)=0 (λ2)2(λ+4)=0

λ 1 = − 4 , λ 2 = λ 3 = 2 \lambda_1=-4,\lambda_2=\lambda_3=2 λ1=4,λ2=λ3=2

然后把 λ = 4 \lambda=4 λ=4代入回去,然后通过行列式变换得到:
[ 1 0 − 3 0 1 1 2 0 0 0 ] \begin{bmatrix}1&0&-3\\0&1&\frac{1}{2}\\0&0&0\end{bmatrix} 1000103210

{ x 1 = 1 3 x 3 x 2 = − 1 2 x 3 \begin{cases}x_1=\frac{1}{3}x_3\\x_2=-\frac{1}{2}x_3\end{cases} {x1=31x3x2=21x3

代入得到其中一个特量:
[ 1 3 − 1 2 1 ] \begin{bmatrix}\frac{1}{3}\\-\frac{1}{2}\\1\end{bmatrix} 31211

我们关键看重根:
λ 2 = λ 3 = 2 \lambda_2=\lambda_3=2 λ2=λ3=2

得到的两个的特量: [ − 2 1 0 ] \begin{bmatrix}-2\\1\\0\end{bmatrix} 210 [ 1 0 1 ] \begin{bmatrix}1\\0\\1\end{bmatrix} 101

线性无关,和重数一致

那么我们顺便可以推理一下:相似的那个对角型:
[ 4       2       2 ] \begin{bmatrix}4&\space&\space\\\space&2&\space\\\space&\space&2\end{bmatrix} 4   2   2

P = [ α 1 , α 2 , α 3 ] P=\begin{bmatrix}\alpha_1,\alpha_2,\alpha_3\end{bmatrix} P=[α1,α2,α3]


对应的我们有这样的定理:
假如A相似于对角型 ⇐ ⇒ r i \Leftarrow\Rightarrow r_i ri个重根,基础解系就有 r i r_i ri个解


例题:
A A A是3阶方阵,已知特值: λ 1 = 1 , λ 2 = 2 , λ 3 = 3 \lambda_1=1,\lambda_2=2,\lambda_3=3 λ1=1,λ2=2,λ3=3,三个特量:, α 2 = ( 1 , 2 , 3 ) T \alpha_2=(1,2,3)^T α2=(1,2,3)T α 3 = ( 1 , 3 , 6 ) T \alpha_3=(1,3,6)^T α3=(1,3,6)T

A A A,求 A T A^T AT的特值和特量


(1)
P = ( α 1 , α 2 , α 3 ) P=(\alpha_1,\alpha_2,\alpha_3) P=(α1,α2,α3)
U = P − 1 A P = [ 1       2       3 ] U=P^{-1}AP=\begin{bmatrix}1&\space&\space\\\space&2&\space\\\space&\space&3\end{bmatrix} U=P1AP=1   2   3

A = P U P − 1 A=PUP^{-1} A=PUP1

(2)
在这里插入图片描述


例题:已知:

[ 0 1 − 1 − 2 0 2 − 1 1 0 ] \begin{bmatrix}0&1&-1\\-2&0&2\\-1&1&0\end{bmatrix} 021101120

A 100 A^{100} A100


∣ λ E − A ∣ = 0 |\lambda E-A|=0 λEA=0

解出: λ 1 = − 1 , λ 2 = 0 , λ 3 = 1 \lambda_1=-1,\lambda_2=0,\lambda_3=1 λ1=1,λ2=0,λ3=1

U = [ − 1 0 0 0 0 0 0 0 1 ] U=\begin{bmatrix}-1&0&0\\0&0&0\\0&0&1\end{bmatrix} U=100000001

A 100 = ( P U P − 1 ) 100 = P U 100 P − 1 A^{100}=(PUP^{-1})^{100}=PU^{100}P^{-1} A100=(PUP1)100=PU100P1


2.2 实对称矩阵的对角化

什么是对角化,在讨论之前,我们先看很多基础概念先。

内积:

给两个向量的分量相乘再相加
a = [ 1 2 3 ] , b = [ 0 0 8 ] a=\begin{bmatrix}1\\2\\3\end{bmatrix},b=\begin{bmatrix}0\\0\\8\end{bmatrix} a=123b=008

1 ∗ 0 + 2 ∗ 0 + 3 ∗ 8 = 24 1*0+2*0+3*8=24 10+20+38=24

这个数就叫内积,内积属于一个数

性质如下:

  • ( a , k b ) = k ( a , b ) (a,kb)=k(a,b) (a,kb)=k(a,b)
  • ( a + b , r ) = ( a , r ) + ( b , r ) (a+b,r)=(a,r)+(b,r) (a+b,r)=(a,r)+(b,r)
  • ( k 1 a + k 2 b , r ) = k 1 ( a , r ) + k 2 ( b , r ) (k_1a+k_2b,r)=k_1(a,r)+k_2(b,r) (k1a+k2b,r)=k1(a,r)+k2(b,r)
  • ( k 1 a 1 + k 2 a 2 , m 1 b 1 + m 2 b 2 ) = k 1 m 1 ( a 1 , b 1 ) + k 1 m 2 ( a 1 , b 2 ) + k 2 m 1 ( a 2 , b 1 ) + k 2 m 2 ( a 2 , b 2 ) (k_1a_1+k_2a_2,m_1b_1+m_2b_2)=k_1m_1(a_1,b_1)+k_1m_2(a_1,b_2)+k_2m_1(a_2,b_1)+k_2m_2(a_2,b_2) (k1a1+k2a2,m1b1+m2b2)=k1m1(a1,b1)+k1m2(a1,b2)+k2m1(a2,b1)+k2m2(a2,b2)

向量的模/长度/范数

∣ ∣ α ∣ ∣ = ( a , a ) ||\alpha||=\sqrt{(a,a)} α=(a,a)

∣ ∣ α ∣ ∣ = ||\alpha||= α=自身内积的算术平方根

所谓长度,就是向量到达原点的距离

这样的向量是单位向量: α = ( 1 , 0 , 0 ) \alpha=(1,0,0) α=(1,0,0)

假如我们说对一个向量标准化:
a ∣ ∣ a ∣ ∣ \frac{a}{||a||} aa

关于长度的性质:

  • ∣ ∣ a ∣ ∣ = 0 ||a||=0 a=0,那么 a = 0 a=0 a=0
  • ∣ ∣ k a ∣ ∣ = ∣ k ∣ ∣ ∣ a ∣ ∣ ||ka||=|k|||a|| ka=ka(k是常数,开出来需要加绝对值)
  • ∣ ( a , b ) ∣ ≤ ∣ ∣ a ∣ ∣ ∣ ∣ b ∣ ∣ |(a,b)|\leq ||a||||b|| (a,b)ab
  • ∣ ∣ a + b ∣ ∣ ≤ ∣ ∣ a ∣ ∣ + ∣ ∣ b ∣ ∣ ||a+b||\leq||a||+||b|| a+ba+b

在这里插入图片描述
正交/垂直
假如我们说内积=0,那么就是正交啦,内积是两个向量,那如果我们说正交向量组,那么向量组内的向量两两正交(任意两个都正交)

正交向量组一定不含零向量

标准正交组:自己做内积=1,和其他做内积=0

  • ( a i , a i ) = 1 (a_i,a_i)=1 (ai,ai)=1
  • ( a i , a j ) = 0 (a_i,a_j)=0 (ai,aj)=0

正交向量组内的向量线性无关,那么他们一定不在同一条直线上

斯密特正交化
给出一组线性无关的向量,求正交的一个向量组,而且是等价的。

就是给出以恶搞向量组,求出另外一个向量组

公式:
b 1 = a 1 b_1=a_1 b1=a1
b 2 = a 2 − ( a 2 , b 1 ) ( b 1 , b 1 ) b 1 b_2=a_2-\frac{(a_2,b_1)}{(b_1,b_1)}b_1 b2=a2(b1,b1)(a2,b1)b1
b 3 = a 3 − ( a 3 , b 1 ) ( b 1 , b 1 ) b 1 − ( a 3 , b 2 ) ( b 2 , b 2 ) b 2 b_3=a_3-\frac{(a_3,b_1)}{(b_1,b_1)}b_1-\frac{(a_3,b_2)}{(b_2,b_2)}b_2 b3=a3(b1,b1)(a3,b1)b1(b2,b2)(a3,b2)b2

这种转化叫做斯密特正交化(正交化的传递)

单位化:
b 1 ∣ ∣ b 1 ∣ ∣ \frac{b_1}{||b_1||} b1b1


例题:
已知三个向量:
a 1 = ( 1 , 1 , 1 , 1 ) T a_1=(1,1,1,1)^T a1=(1,1,1,1)T a 2 = ( 1 , − 2 , − 3 , − 4 ) T a_2=(1,-2,-3,-4)^T a2=(1,2,3,4)T a 3 = ( 1 , 2 , 2 , 3 ) T a_3=(1,2,2,3)^T a3=(1,2,2,3)T

做斯密特正交化


正交矩阵
A是n阶方阵,而且满足: A A T = E AA^T=E AAT=E,则称 A A A是正交矩阵

正交矩阵的性质:
  • A是正交矩阵: ∣ A ∣ = 1 |A|=1 A=1或者 ∣ A ∣ = − 1 |A|=-1 A=1
  • A T = A − 1 A^T=A^{-1} AT=A1
  • 向量 α \alpha α β \beta β ( A α , A β ) = ( α , β ) (A\alpha,A\beta)=(\alpha,\beta) (Aα,Aβ)=(α,β)
  • A的列向量是标准的正交向量组

(最后一个性质用来证明A是正交矩阵)


例题:已知三阶非零 A A A a i j = A i j a_{ij}=A_{ij} aij=Aij,证明|A|=1,而且|A|正交


A i j A_{ij} Aij就是代数余子式
A ∗ = [ A 11 A 21 A 31 A 12 A 22 A 32 A 13 A 23 A 33 ] = [ a 11 a 21 a 31 a 12 a 22 a 32 a 13 a 23 a 33 ] = A T A^*=\begin{bmatrix}A_{11}&A_{21}&A_{31}\\A_{12}&A_{22}&A_{32}\\A_{13}&A_{23}&A_{33}\end{bmatrix}=\begin{bmatrix}a_{11}&a_{21}&a_{31}\\a_{12}&a_{22}&a_{32}\\a_{13}&a_{23}&a_{33}\end{bmatrix}=A^T A=A11A12A13A21A22A23A31A32A33=a11a12a13a21a22a23a31a32a33=AT

∣ A ∣ A − 1 = A T |A|A^{-1}=A^T AA1=AT

设向量: α = [ a 11 , a 12 , a 13 ] \alpha=[a_{11},a_{12},a_{13}] α=[a11,a12,a13]

∣ A ∣ = a 11 A 11 + a 12 A 12 + a 13 A 13 = a 11 2 + a 12 2 + a 13 2 = ( α , α ) > 0 |A|=a_{11}A_{11}+a_{12}A_{12}+a_{13}A_{13}=a_{11}^2+a_{12}^2+a_{13}^2=(\alpha,\alpha)>0 A=a11A11+a12A12+a13A13=a112+a122+a132=(α,α)>0

A T A = A ∗ A = ∣ A ∣ E A^TA=A*A=|A|E ATA=AA=AE
∣ A T A ∣ = ∣ ∣ A ∣ E ∣ |A^TA|=||A|E| ATA=AE
∣ A T ∣ ∣ A ∣ = ∣ A ∣ 3 |A^T||A|=|A|^{3} ATA=A3
∣ A ∣ 2 = ∣ A ∣ 3 |A|^2=|A|^3 A2=A3

所以: ∣ A ∣ = 1 |A|=1 A=1


实对称矩阵(都是实数,对称)
实对称矩阵A的不同特值的特量正交

正交相似和相似

  • 相似:A和B同阶,存在可逆矩阵 P P P,使得满足 P − 1 A P = B P^{-1}AP=B P1AP=B
  • 正交相似:A和B同阶,存在正交矩阵 P P P,使得满足 P − 1 A P = B P^{-1}AP=B P1AP=B

正交相似一定是相似的

如果一个n阶矩阵有n个无关向量,那么一定能对角化


例题:
已知: A = [ 4 − 4 2 − 4 4 − 2 2 − 2 1 ] A=\begin{bmatrix}4&-4&2\\-4&4&-2\\2&-2&1\end{bmatrix} A=442442221

求正交矩阵


第一步,肯定是先求特值:
∣ λ E − A ∣ = 0 |\lambda E-A|=0 λEA=0
在这里插入图片描述
λ 2 ( λ − 9 ) = 0 \lambda^2(\lambda-9)=0 λ2(λ9)=0

特值:
λ 3 = 9 \lambda_3=9 λ3=9
λ 1 = λ 2 = 0 \lambda_1=\lambda_2=0 λ1=λ2=0

我们知道单根求出的特量 a 1 a_1 a1和下面重根求出的 a 2 a_2 a2 a 3 a_3 a3一定是线性无关的
在这里插入图片描述
所以,我们只需对 a 2 , a 3 a_2,a_3 a2,a3进行斯密特正交化得到
在这里插入图片描述
正交相似的矩阵: P = ( a 1 , a 2 , a 3 ) P=(a_1,a_2,a_3) P=(a1,a2,a3)

然后正交矩阵就是:
在这里插入图片描述


例题:三阶对称矩阵A,已知特值:6,3,3,特值6对应的特量 a 1 = [ 1 1 1 ] a_1=\begin{bmatrix}1\\1\\1\end{bmatrix} a1=111
求A


我们设3对应的特量: a = ( x 1 , x 2 , x 3 ) T a=(x_1,x_2,x_3)^T a=(x1,x2,x3)T

( a , a 1 ) = 0 (a,a_1)=0 (a,a1)=0
x 1 = − x 2 − x 3 x_1=-x_2-x_3 x1=x2x3

a 2 = [ − 1 1 0 ] a_2=\begin{bmatrix}-1\\1\\0\end{bmatrix} a2=110, a 3 = [ − 1 0 1 ] a_3=\begin{bmatrix}-1\\0\\1\end{bmatrix} a3=101

P = ( a 1 , a 2 , a 3 ) P=(a_1,a_2,a_3) P=(a1,a2,a3)
U = [ 3 0 0 0 3 0 0 0 6 ] U=\begin{bmatrix}3&0&0\\0&3&0\\0&0&6\end{bmatrix} U=300030006

A = P − 1 U P A=P^{-1}UP A=P1UP

©️2020 CSDN 皮肤主题: 程序猿惹谁了 设计师:上身试试 返回首页