第一话:微积分预备知识【考研数学:高等数学】(基础版)

讲义修订日期:2020年8月10日

讲义目录:

映射

  • 【1】映射含义
  • 【2】满射,单射,逆映射,复合映射

函数

  • 【1】函数含义
  • 【2】函数的特性
  • 【3】反函数
  • 【4】复合函数
  • 【5】隐函数
  • 【6】初等函数
  • 【7】三角函数专题

极限

  • 【1】数列的极限
  • 【2】函数的极限
  • 【3】无穷小和无穷大(含无穷小和无穷大的比较)
  • 【4】极限存在准则
  • 【5】两个重要极限
  • 【6】函数的连续与间断
  • 【7】复合函数求极限
  • 【8】零点存在定理

导数

  • 【1】导数定义
  • 【2】单侧导数
  • 【3】讨论可导(含可导和连续的关系)
  • 【4】求导法则(含三角函数求导)
  • 【5】反函数求导
  • 【6】复合函数求导(链式法则)
  • 【7】高阶函数求导
  • 【8】隐函数求导

1. 映射

1.1 映射的含义

映射指的是两个非空集合 X X X Y Y Y,满足法则 f f f,在 X X X中的每一个元素x都有一个唯一的y对应,而y则是 Y Y Y的元素,我们则称 f f f x x x y y y的一个映射。(记住:每个x都有唯一对应的y

x x x的范围我们称为 D f Df Df(定义域), y y y的范围我们称为 R f Rf Rf(值域),需要注意的是 R f Rf Rf不一定等价于 Y Y Y R f Rf Rf Y Y Y的子集。

映射我们并没有规定数据类型,映射是一种关系,函数是一种特殊的映射。

1.2 满射,单射,逆映射,复合映射

满射:当 R f = Y Rf=Y Rf=Y的时候
单射:不允许两个x有相同的y
11映射:同时满足满射和单射
逆映射:每个y都有唯一对应的x,只有单射才能满足逆映射
复合映射:映射 g : x → y g:x\rightarrow y g:xy,映射 f : y → z f:y\rightarrow z f:yz ,复合映射 h : x → z h:x \rightarrow z h:xz


2. 函数

2.1 函数定义

构成函数的两要素:定义域 D f Df Df和规则 f f f

[x] 表示不超过x的最大整数
例如:[3.2]=3,[-1.2]=-2

2.2 函数的特性

(1)有界性

存在整数 M M M,使得 ∣ f ( x ) ∣ ≤ M |f(x)|\leq M f(x)M,有界的充要条件是有上界也有下界

(2)单调性

单调增: x 1 < x 2 , f ( x 1 ) < f ( x 2 ) x_1<x_2 ,f(x_1)<f(x_2) x1<x2f(x1)<f(x2),单调减: x 1 < x 2 , f ( x 1 ) > f ( x 2 ) x_1<x_2,f(x_1)>f(x_2) x1<x2f(x1)>f(x2)

(3)奇偶性

奇函数: f ( − x ) = − f ( x ) f(-x)=-f(x) f(x)=f(x),偶函数: f ( − x ) = f ( x ) f(-x)=f(x) f(x)=f(x)

(4)周期性

存在正数 l l l,使得 f ( x + l ) = f ( x ) f(x+l)=f(x) f(x+l)=f(x),我们指的周期一般是最小周期,不是所有的周期都有最小周期
比如下面这个以有无理数进行分类的函数:
D ( x ) = { 0 ( x ∈ Q ) 1 ( x ∉ Q ) D(x)=\begin{cases} 0 (x\in Q) \\ 1 (x\not\in Q) \end{cases} D(x)={0xQ1xQ
这个函数不存在最小正整数周期,这个函数任何正有理数都是周期。

2.3 反函数(逆函数)

所谓反函数,就是y做自变量。一个函数有反函数的前提是这个函数是单射(不存在两个x对应相同的y,典型的就是 y = x 2 y=x^2 y=x2,这个就没有反函数)

假如 f ( x ) f(x) f(x) 单调,单射,则反函数一定存在,反函数的单调性和原函数的单调性一致的。

原函数和反函数关于 y = x y=x y=x对称

原函数 f f f,反函数 f − 1 f^{-1} f1

2.4 复合函数

t = f ( x ) , y = g ( t ) t=f(x),y=g(t) t=f(x)y=g(t),则称 y = h ( x ) y=h(x) y=h(x)为复合函数


例题1 f ( x ) f(x) f(x) 的定义域 ( − 1 , 1 ) (-1,1) (1,1) f ( x ) = g ( x ) + h ( x ) f(x)=g(x)+h(x) f(x)=g(x)+h(x) g ( x ) g(x) g(x) 是偶函数, h ( x ) h(x) h(x) 是奇函数,已知 f ( x ) f(x) f(x),求 g ( x ) g(x) g(x) h ( x ) h(x) h(x)

解:

已知奇偶性,则可推断: g ( x ) = g ( − x ) , h ( − x ) = − h ( x ) g(x)=g(-x),h(-x)=-h(x) g(x)=g(x)h(x)=h(x)

{ f ( − x ) = g ( x ) − h ( x ) f ( x ) = g ( x ) + h ( x ) \begin{cases} f(-x)=g(x)-h(x) \\ f(x)=g(x)+h(x) \end{cases} {f(x)=g(x)h(x)f(x)=g(x)+h(x)
解得:
g ( x ) = f ( x ) + f ( − x ) 2 , h ( x ) = f ( x ) − f ( − x ) 2 g(x)=\frac{f(x)+f(-x)}{2},h(x)=\frac{f(x)-f(-x)}{2} g(x)=2f(x)+f(x)h(x)=2f(x)f(x)


以上例题告诉我们:任何一个函数都可以用一个奇函数和一个偶函数表示

2.5 隐函数

所谓隐函数,就是通过: F ( x , y ) = 0 F(x,y)=0 F(x,y)=0的形式来确定y是x的函数。例如: e x y + 2 x 2 = 9 y e^{xy}+2x^2=9y exy+2x2=9y

2.6 初等函数

无非就是四类:幂函数( y = x a y=x^a y=xa),指数函数( y = a x y=a^x y=ax),对数函数( y = l o g a x y=log_ax y=logax),三角函数

2.7 三角函数专题

(1)基本三角函数

属性:<正,余>
类型:<弦,割,切>

s i n , c o s sin,cos sincos
s e c , c s c sec,csc seccsc
t a n , c o t tan,cot tancot

割 = 1 反 弦 割=\frac{1}{反弦} =1

例如: s e c = 1 c o s sec=\frac{1}{cos} sec=cos1

图像:

在这里插入图片描述

(2)基本关系公式

【弦割关系式】

s e c 2 x = 1 + t a n 2 x c s c 2 x = 1 + c o t 2 x sec^2x=1+tan^2x\\ csc^2x=1+cot^2x sec2x=1+tan2xcsc2x=1+cot2x

割方=切方+1(正对正,余对余)

【角和差公式】
s i n ( a ± b ) = S a C b ± C a S b c o s ( a ± b ) = C a C b ∓ S a S b t a n ( a ± b ) = T a ± T b 1 ∓ T a T b sin(a\pm b)=S_aC_b\pm C_aS_b \\ cos(a\pm b)=C_aC_b\mp S_aS_b \\ tan(a\pm b)=\frac{T_a\pm T_b}{1\mp T_aT_b} sin(a±b)=SaCb±CaSbcos(a±b)=CaCbSaSbtan(a±b)=1TaTbTa±Tb

【倍角公式】
s i n 2 a = 2 S C c o s 2 a = C 2 − S 2 = 2 C 2 − 1 = 1 − 2 S 2 sin2a=2SC\\ cos2a=C^2-S^2=2C^2-1=1-2S^2 sin2a=2SCcos2a=C2S2=2C21=12S2

【诱导公式】
口诀:“奇变偶不变,符号看象限”
sin(π-α)=sinα
cos(π-α)=-cosα
tan(π-α)=-tanα
cot(π-α)=-cotα
sin(π/2+α)=cosα
sin(π/2-α)=cosα
cos(π/2+α)=-sinα
cos(π/2-α)=sinα
tan(π/2+α)=-cotα
tan(π/2-α)=cotα
cot(π/2+α)=-tanα
cot(π/2-α)=tanα

(3)反三角函数

反三角函数就是三角函数的反函数,例如: s i n ( A n g l e ) = ( V a l u e ) sin(Angle)=(Value) sin(Angle)=(Value),反三角函数就是: a r c s i n ( V a l u e ) = ( A n g l e ) arcsin(Value)=(Angle) arcsin(Value)=(Angle)

需要注意的是,这里反三角函数的Angle(反三角函数的值域)的范围属于原函数的一个最小周期。

a r c s i n   R f ∈ [ − π 2 , π 2 ] a r c c o s   R f ∈ [ 0 , π ] a r c t a n   R f ∈ [ − π 2 , π 2 ] arcsin \space Rf \in [-\frac{\pi}{2},\frac{\pi}{2}] \\ arccos \space Rf \in [0,\pi] \\ arc tan \space Rf \in [-\frac{\pi}{2},\frac{\pi}{2}] arcsin Rf[2π,2π]arccos Rf[0,π]arctan Rf[2π,2π]


3. 极限

3.1 数列的极限

首先,我们需要明确,数列在几何上是一个散点图。数列极限的定义:任给一个 S e g > 0 Seg>0 Seg>0,存在某一项 N N N,当 n > N n>N n>N时, ∣ x n − E d g e ∣ < S e g |x_n-Edge|<Seg xnEdge<Seg ,则 E d g e Edge Edge是极限

怎样理解呢?
就是说,我们给出任意小的距离,我们都能找出一项能比这个任意小的距离还小的点。那么决定这种现象的重要参数,就是Edge,也就是数列的极限。

那我们证明数列的极限也很简单了,我们只需要证明存在一个N满足n>N时,使得 ∣ x n − E d g e ∣ < S e g |x_n-Edge|<Seg xnEdge<Seg 这个不等式成立即可。


例题2:已知数列 2 , 1 2 , 4 3 . . . n + ( − 1 ) n − 1 n 2,\frac{1}{2},\frac{4}{3}... \frac{n+(-1)^{n-1}}{n} 22134...nn+(1)n1请证明他的极限是1

证明:

∣ x n − 1 ∣ = ∣ ( − 1 ) n − 1 n ∣ = 1 n |x_n-1|=|\frac{(-1)^{n-1}}{n}|=\frac{1}{n} xn1=n(1)n1=n1
设任意的 ϵ \epsilon ϵ >0,可取
N = [ 1 ϵ ] + 1 N=[\frac{1}{\epsilon}]+1 N=[ϵ1]+1

n > N n>N n>N时, ∣ x n − 1 ∣ = 1 n < 1 N < ϵ |x_n-1|=\frac{1}{n}<\frac{1}{N}<\epsilon xn1=n1<N1<ϵ

例题3:已知数列:
x n = ( − 1 ) n ( n + 1 ) 2 x_n=\frac{(-1)^n}{(n+1)^2} xn=(n+1)2(1)n
证明极限是0

证明

∣ x n − 0 ∣ = 1 ( n + 1 ) 2 < 1 n 2 < ϵ |x_n-0|=\frac{1}{(n+1)^2}<\frac{1}{n^2}<\epsilon xn0=(n+1)21<n21<ϵ

设任意的 ϵ \epsilon ϵ >0,可取
N = [ 1 ϵ ] + 1 N=[\frac{1}{\sqrt{\epsilon}}]+1 N=[ϵ 1]+1

n > N n>N n>N时, ∣ x n − 0 ∣ = 1 ( n + 1 ) 2 < ϵ |x_n-0|=\frac{1}{(n+1)^2}<\epsilon xn0=(n+1)21<ϵ

实际上解题的关键在于,看N本身怎样取


3.2 函数的极限

函数极限的定义: f ( x ) f(x) f(x) x 0 x_0 x0的去心邻域有定义(在 x 0 x_0 x0没有定义),如果存在 A A A,对于任意 ϵ > 0 \epsilon >0 ϵ>0,总存在 G G G满足不等式: 0 < ∣ x − x 0 ∣ < G 0<|x-x_0|<G 0<xx0<G时,对应的 ∣ f ( x ) − A ∣ < ϵ |f(x)-A|<\epsilon f(x)A<ϵ,那么 A A A我们称作为函数 f ( x ) f(x) f(x) x → x 0 x\rightarrow x_0 xx0时的极限

l i m x → x 0 f ( x ) = f ( x 0 ) lim_{x\rightarrow x_0} f(x)=f(x0) limxx0f(x)=f(x0)

所谓 “极限” 是指 “无限靠近而永远不能到达”,所以我们在该点处是没有定义的。

我们考虑极限,需要从两个方向逼近考虑。

也就是左极限(从左边逼近)右极限(从右边逼近)

所以极限存在的一个重要条件:左右极限均存在并相等。
看下面这个例子:

f ( x ) = { x − 1 ( x < 0 ) 0 ( x = 0 ) x + 1 ( x > 0 ) f(x)=\begin{cases}x-1(x<0)\\0 (x=0)\\x+1(x>0)\\\end{cases} f(x)=x1(x<0)0(x=0)x+1(x>0)

l i m x → 0 − f ( x ) = − 1 l i m x → 0 + f ( x ) = 1 lim_{x\rightarrow 0^-}f(x)=-1\\ lim_{x\rightarrow 0^+}f(x)=1\\ limx0f(x)=1limx0+f(x)=1

至于x=0我们关心吗?不关心,因为极限管不到那里去。

数列极限和函数极限的关系
数列极限:
x n → x 0 l i m n → ∞ f ( x n ) = A {x_n}\rightarrow x_0 \\ lim_{n\rightarrow \infty}f(x_n)=A xnx0limnf(xn)=A

函数极限:
l i m x → x 0 f ( x ) = A lim_{x\rightarrow x_0}f(x)=A limxx0f(x)=A

函数极限存在,对应的数列极限一定存在,但是数列极限存在,对应函数极限不一定存在
在这里插入图片描述

3.3 无穷小和无穷大(含比较)

无穷小: 指的是趋向于0(包括从正方向和负方向同时趋近,也包括了本身就是0)

无穷大: 指的是趋向于正无穷或者负无穷

这里的无穷大和无穷小这里很容易产生歧义,看下面的图:
在这里插入图片描述
无穷小就是极限为0

无穷小的加减乘都是无穷小,但是无穷小比无穷小就不一定了(洛必达法则)

无穷大加无穷大却不一定就是无穷大,因为无穷大包括正无穷大和负的无穷大两种。

假如 f ( x ) f(x) f(x)是无穷大,那么 1 f ( x ) \frac{1}{f(x)} f(x)1是无穷小。

无穷小的比较
实际上比较的是趋于0的速度比较,比如我们看这个:
在这里插入图片描述

l i m x → 0 x 2 3 x = 0 lim_{x\rightarrow 0} \frac{x^2}{3x}=0 limx03xx2=0

明显的, x 2 x^2 x2趋于0的速度更快,或者,我们可以用洛必达法则进行处理。

假如:
l i m B A = 0 lim\frac{B}{A}=0 limAB=0,B趋于0的速度更快,则我们称B是A的高阶无穷小
l i m B A = ∞ lim\frac{B}{A}=\infty limAB=,A趋于0的速度更快,则我们称B是A的低阶无穷小
l i m B A = C lim\frac{B}{A}=C limAB=C,B和A趋于0的速度相似,则我们称B是A的同阶无穷小

若C=1,则为B和A等阶无穷小。

我们在求极限的时候,市场会用到等阶无穷小进行替换,所以我们需要熟记下面一些等阶无穷小:
【1】一元函数类
a x ⇐ ⇒ ( 1 + x ) a − 1 x ⇐ ⇒ s i n x , a r c s i n x , t a n x , a r c t a n x , l n ( 1 + x ) , e x − 1 ax\Leftarrow\Rightarrow (1+x)^a-1\\x\Leftarrow\Rightarrow sinx,arcsinx,tanx,arctanx,ln(1+x),e^x-1 ax(1+x)a1xsinxarcsinxtanxarctanxln(1+x)ex1

【2】二元函数类
x 2 2 ⇐ ⇒ 1 − c o s x \frac{x^2}{2}\Leftarrow\Rightarrow 1-cosx 2x21cosx

【3】指数函数类
a x − 1 ⇐ ⇒ l n ( a x ) a^x-1\Leftarrow\Rightarrow ln(ax) ax1ln(ax)


3.4 极限存在准则

准则1:夹逼定理(数列)
对于数列{ x n x_n xn},{ y n y_n yn},{ z n z_n zn},存在 n 0 n_0 n0,当 n > n 0 n>n_0 n>n0 y n ≤ x n ≤ z n y_n\leq x_n \leq z_n ynxnzn,若 l i m n → ∞ y n = A l i m n → ∞ z n = A lim_{n\rightarrow \infty}y_n=A\\lim_{n\rightarrow \infty}z_n=A limnyn=Alimnzn=A
则有:
l i m n → ∞ x n = A lim_{n\rightarrow \infty}x_n=A limnxn=A

准则2:单调有界数列必有极限
注意是:数列!!!!数列!!!!数列!!!

这个是易错!!!
我们会经常用:单调有界函数必有极限 来迷惑你的

首先,有界的通俗含义,没有无穷大,只需要在可视范围内就行,对于数列来讲,自变量是n,所以,只有: n → ∞ n\rightarrow\infty n这种变化,所以不难判断,单调有界的数列一定是有极限的,但是,对于函数来讲,x的趋向就有很多了,有单调有界的函数是没有极限。
比如:
这个函数:
f ( x ) = { x + 1 ( 0 ≤ x ≤ 1 ) x − 1 ( − 1 ≤ x < 0 ) f(x)=\begin{cases}x+1(0\leq x\leq1)\\x-1(-1\leq x< 0)\end{cases} f(x)={x+10x1x1(1x<0)
在这里插入图片描述
这个函数单调吗?单调增
这个函数有界吗?有,[-1,1]

有极限吗?没有,因为出现跳跃点了

另外,收敛的意思是数列有且仅有一个极限,所以,收敛的数列一定有界,有界的数列不一定收敛


3.5 两个重要极限

第一个:
l i m x → 0 s i n x x = 1 lim_{x\rightarrow 0}\frac{sinx}{x}=1 limx0xsinx=1
第二个:
l i m x → ∞ ( 1 + 1 x ) x = e lim_{x\rightarrow\infty}(1+\frac{1}{x})^x=e limx(1+x1)x=e


3.6 函数的连续和间断

连续的几何含义:一笔画

用代数表述出来就是:
l i m Δ x → 0 Δ y = l i m Δ x → 0 ( f ( x 0 + Δ x ) − f ( x 0 ) ) = 0 lim_{\Delta x\rightarrow0}\Delta y=lim_{\Delta x\rightarrow0}(f(x_0+\Delta x)-f(x_0))=0 limΔx0Δy=limΔx0(f(x0+Δx)f(x0))=0

我们之前描述的有界性,是对数列和函数同时适用的,收敛,我们一般只会用在数列上,而连续,是函数专用的,当我们说一个函数连续的时候,就意味者我们可以用一笔画这个函数。

假如说我们函数在某点 x 0 x_0 x0连续,就同时说明这些事情:
(1)在 x 0 x_0 x0处有极限
(2)函数在 x 0 x_0 x0有定义
(3)在 x 0 x_0 x0处的极限等于函数值

函数连续,那就是在定义域内所有的点都连续,都满足以上条件。

那什么是左连续,什么是右连续呢?

看这个图:

在这里插入图片描述
假如 y = x y=x y=x [ − 1 , 1 ] [-1,1] [1,1]有定义,那么我们可以说在函数在 x = − 1 x=-1 x=1右连续,在 x = 1 x=1 x=1左连续

再看这个:
在这里插入图片描述
这个在 x = 0 x=0 x=0既不左连续,又不右连续

我们的左右连续是用来对端点进行讨论的

怎样证明连续性?
用定义来证明即可,比如证明 y = s i n x y=sinx y=sinx ( − ∞ , + ∞ ) (-\infty,+\infty) (,+)连续,我们只需要证明 l i m Δ x → 0 Δ y = 0 lim_{\Delta x\rightarrow 0}\Delta y=0 limΔx0Δy=0

已知:
Δ y = s i n ( x + Δ x ) − s i n x \Delta y=sin(x+\Delta x)-sinx Δy=sin(x+Δx)sinx
所以有:
Δ y = 2 s i n Δ x 2 c o s ( x + Δ x 2 ) \Delta y=2sin\frac{\Delta x}{2}cos(x+\frac{\Delta x}{2}) Δy=2sin2Δxcos(x+2Δx)

利用无穷小的等价替换:
Δ y = Δ x c o s ( x + Δ x 2 ) \Delta y=\Delta xcos(x+\frac{\Delta x}{2}) Δy=Δxcos(x+2Δx)
因为 Δ x → 0 \Delta x\rightarrow 0 Δx0,所以 l i m Δ y = 0 lim\Delta y=0 limΔy=0

知道了连续的定义,我们可以更容易推断间断的含义(满足任意其一即为间断):

(1)在 x 0 x_0 x0处无定义
(2) l i m x → x 0 f ( x ) lim_{x\rightarrow x_0}f(x) limxx0f(x)不存在
(3) l i m x → x 0 f ( x ) ≠ f ( x 0 ) lim_{x\rightarrow x_0}f(x)\neq f(x_0) limxx0f(x)=f(x0)

比如 y = t a n x y=tanx y=tanx,在 x = π 2 x=\frac{\pi}{2} x=2π的地方无意义,所以,那里是间断点,这个函数就不连续了。

  • 无穷间断点示例:
    y = t a n x y=tanx y=tanx x = π / 2 x=\pi/2 x=π/2
    y = 1 x y=\frac{1}{x} y=x1 x = 0 x=0 x=0
    在这里插入图片描述

  • 震荡间断点的示例:
    y = s i n 1 x y=sin\frac{1}{x} y=sinx1 x = 0 x=0 x=0
    越接近0的时候,y数值是震荡的,震荡频率越大,我们视作为其为不确定的存在

  • 可去间断点的示例:
    y = x 2 − 1 x − 1 y=\frac{x^2-1}{x-1} y=x1x21 x = 1 x=1 x=1

  • 跳跃间断点的示例:
    y = { x + 1 ( x > 0 ) x − 1 ( x < 0 ) 0 ( x = 0 ) y=\begin{cases}x+1(x>0)\\x-1(x<0)\\0(x=0)\end{cases} y=x+1x>0x1x<00x=0

我们会问判断第几类的间断点
第一类的间断点
左右极限都存在,但是在该点的意义不存在,或者左右极限不相等,比如:可去间断点和跳跃间断点

第二类间断点
左右极限至少一个不存在,比如震荡的间断和无穷的间断,

潜规则:初等函数都连续(需要时刻记住)


例题4: y = l i m n → ∞ 1 1 + x n y=lim_{n\rightarrow\infty\frac{1}{1+x^n}} y=limn1+xn1判断x=1是不是间断点,是的话是第几类?

解:

我们首先搞清楚这个函数的自变量是谁,是x!
l i m x → 1 + y = 0 l i m x → 1 − y = 1 y ( x = 1 ) = 1 2 lim_{x\rightarrow1^+}y=0\\lim_{x\rightarrow1^-}y=1\\y(x=1)=\frac{1}{2} limx1+y=0limx1y=1y(x=1)=21

左右极限都存在,但是三者都不同,所以属于第一类的间断点


例题5: F ( x ) F(x) F(x)是一个分段函数,x在定义域内连续,求a和b
f ( x ) { a + x ( x ≤ 0 ) x 2 + 1 ( 0 < x < 1 ) b x ( x > = 1 ) f(x)\begin{cases}a+x(x\leq0)\\x^2+1(0<x<1)\\\frac{b}{x}(x >= 1)\end{cases} f(x)a+xx0x2+10<x<1xbx>=1

解:

首先需要知道的是初等函数都是连续的

l i m x → 0 = a + 0 = 1 lim_{x\rightarrow0}=a+0=1 limx0=a+0=1
l i m x → 1 = 2 = b lim_{x\rightarrow1}=2=b limx1=2=b


例题6:在定义域内一定连续,问k的值
f ( x ) = { s i n 2 x x ( x < 0 ) ( x + k ) 2 ( x > = 0 ) f(x)=\begin{cases}\frac{sin2x}{x}(x<0)\\(x+k)^2(x>=0)\end{cases} f(x)={xsin2xx<0(x+k)2x>=0

解:

l i m x → 0 s i n 2 x x = l i m x → 0 ( x + k ) 2 = k 2 lim_{x\rightarrow0}\frac{sin2x}{x}=lim_{x\rightarrow0}(x+k)^2=k^2 limx0xsin2x=limx0(x+k)2=k2

2 l i m x → 0 s i n 2 x 2 x = 2 = k 2 2lim_{x\rightarrow0}\frac{sin2x}{2x}=2=k^2 2limx02xsin2x=2=k2
所以, k = ± 2 k=\pm\sqrt{2} k=±2


3.7 复合函数求极限

直接上例题:


例题7: l i m x → 0 l n ( 1 + x ) x lim_{x\rightarrow0}\frac{ln(1+x)}{x} limx0xln(1+x)

解:

n ∗ l o g M = l o g M n n*logM=logM^n nlogM=logMn
所以, l i m x → 0 l n ( 1 + x ) 1 x lim_{x\rightarrow0}ln(1+x)^{\frac{1}{x}} limx0ln(1+x)x1
我们已知重要极限:
l i m x → ∞ ( 1 + 1 x ) x = e lim_{x\rightarrow\infty}(1+\frac{1}{x})^x=e limx(1+x1)x=e
所以, l i m x → 0 ( 1 + x ) 1 x = e lim_{x\rightarrow0}(1+x)^{\frac{1}{x}}=e limx0(1+x)x1=e

原式: l i m x → 0 l n e = 1 lim_{x\rightarrow0}lne=1 limx0lne=1


例题8: l i m x → 0 ( 1 + 2 x ) 3 s i n x lim_{x\rightarrow0}(1+2x)^{\frac{3}{sinx}} limx0(1+2x)sinx3

解:

这种,我们用 e l n e^{ln} eln法解决
l i m x → 0 e l n ( f ( x ) ) lim_{x\rightarrow0}e^{ln(f(x))} limx0eln(f(x))
这样的好处是能够利用 n ∗ l o g M = l o g M n n*logM=logM^n nlogM=logMn的规则进行化简。

我们先把 f ( x ) f(x) f(x)这部分弄出来:
( 1 + 2 x ) 3 s i n x = ( 1 + 2 x ) 1 2 x ∗ 2 x ∗ 3 s i n x (1+2x)^{\frac{3}{sinx}}=(1+2x)^{\frac{1}{2x}*2x*\frac{3}{sinx}} (1+2x)sinx3=(1+2x)2x12xsinx3
l i m x → 0 ( 1 + 2 x ) 1 2 x = e lim_{x\rightarrow0}(1+2x)^{\frac{1}{2x}}=e limx0(1+2x)2x1=e
l i m x → 0 s i n x x = 1 lim_{x\rightarrow0}\frac{sinx}{x}=1 limx0xsinx=1
l i m x → 0 e 6 x s i n x ∗ ( l n e ) = e 6 lim_{x\rightarrow0}e^{\frac{6x}{sinx}*(lne)}=e^6 limx0esinx6x(lne)=e6


3.8 零点存在定理

我们先看一下闭区间的连续性质:首先在一个闭区间里面满足有界性和最值性和介值性,所谓有界性就是:没有无穷大的区间,存在最大值和最小值;介值的意思是假如 m < c < M m<c<M m<c<M,必存在 f ( E ) = c ( E ∈ [ a , b ] ) f(E)=c(E\in[a,b]) f(E)=cE[a,b]
在这里插入图片描述

连续:就是一笔画,你假如有无穷大就不能一笔画了。

零点存在定理实际上是介值性的拓展:
函数在 [ a , b ] [a,b] [a,b]上连续,假如满足 f ( a ) f ( b ) < 0 f(a)f(b)<0 f(a)f(b)<0,在(a,b)上存在一点 E E E,满足 f ( E ) = 0 f(E)=0 f(E)=0
在这里插入图片描述


例题:证明: e 3 x − x = 2 e^{3x}-x=2 e3xx=2,在区间(0,1)上连续,存在至少一个实根

证明:

首先连续性无需证明,这是个初等函数组成的函数,所以一定是连续的,我们证明存在一个实根。

设函数: f ( x ) = e 3 x − x − 2 f(x)=e^{3x}-x-2 f(x)=e3xx2
f ( x ) = 0 f(x)=0 f(x)=0的x有解则,证明成立。
f ( 0 ) = − 3 f(0)=-3 f(0)=3 f ( 1 ) = e 3 − 3 > 0 f(1)=e^3-3>0 f(1)=e33>0
因为: f ( 0 ) f ( 1 ) < 0 f(0)f(1)<0 f(0)f(1)<0,由零点存在定理可得,必然存在 E ∈ ( 0 , 1 ) E\in(0,1) E(0,1)满足 f ( E ) = 0 f(E)=0 f(E)=0,故成立


4. 导数

4.1 导数含义

导数和极限的关系是什么呢?极限我们研究的是函数在边界存在的意义,导数研究的是函数在变化过程的意义。

导数的几何含义就是某一点的斜率组成的函数表示。

研究极限的时候我们定义的函数需要去心邻域,但是在研究导数的时候我们的函数的邻域不去心的。

假如 f ( x ) f(x) f(x) x 0 x_0 x0的邻域内有定义,在 x 0 x_0 x0取增量 Δ x \Delta x Δx,当 x 0 → x 0 + Δ x x_0\rightarrow x_0+\Delta x x0x0+Δx时, Δ y = f ( x 0 + Δ x ) − f ( x 0 ) \Delta y=f(x_0+\Delta x)-f(x_0) Δy=f(x0+Δx)f(x0),我们定义导数 f ′ ( x 0 ) = l i m Δ x → 0 Δ y Δ x = l i m Δ x → 0 f ( x 0 + Δ x ) − f ( x 0 ) x 0 f'(x_0)=lim_{\Delta x\rightarrow0}\frac{\Delta y}{\Delta x}=lim_{\Delta x\rightarrow0}\frac{f(x_0+\Delta x)-f(x_0)}{x_0} f(x0)=limΔx0ΔxΔy=limΔx0x0f(x0+Δx)f(x0)

关于 f ′ ( x 0 ) f'(x_0) f(x0)的写法,我们可以写成 d y d x ∣ x = x 0 \frac{dy}{dx}|_{x=x_0} dxdyx=x0

这个不是分数的概念,是一体的。

有利用导数的定义来解题的,看例题:


例题:已知 y = ∣ x ∣ y=|x| y=x,证明在x=0处的导数不存在

证明:

这里就需要涉及到左导数和右导数的问题了。
首先我们根据导数的定义写出表达式:
l i m Δ x → 0 − f ( x 0 + Δ x ) − f ( x 0 ) x 0 = − h − 0 h = − 1 lim_{\Delta x\rightarrow0^-}\frac{f(x_0+\Delta x)-f(x_0)}{x_0}=\frac{-h-0}{h}=-1 limΔx0x0f(x0+Δx)f(x0)=hh0=1

l i m Δ x → 0 + f ( x 0 + Δ x ) − f ( x 0 ) x 0 = h − 0 h = 1 lim_{\Delta x\rightarrow0^+}\frac{f(x_0+\Delta x)-f(x_0)}{x_0}=\frac{h-0}{h}=1 limΔx0+x0f(x0+Δx)f(x0)=hh0=1

左导数不等于右导数,所以该点导数不存在,就是该点的斜率不存在。


4.2 单侧导数

我们不妨想一下单侧导数的意义是什么,就是从一点的单侧逼近该点,看该点的斜率是否存在,需要注意的是,斜率为0和斜率存在是不一样的,不存在的意思是两侧的导数存在歧义。

所以,可导的充分必要条件是左右导数存在且相等。

f ′ ( x 0 ) 存 在 ⇐ ⇒ f + ′ ( x 0 ) = f − ′ ( x 0 ) f'(x_0)存在\Leftarrow\Rightarrow f'_+(x_0)=f'_-(x_0) f(x0)f+(x0)=f(x0)


4.3 可导与连续

在某点可导和在区间可导的区别:
我们说“可导”指的是在某一点的可导,假如在某一个区间上可导那就是,左端点 f + ′ ( a ) f'_+(a) f+(a)存在,右端点 f − ′ ( b ) f'_-(b) f(b)存在,那么我们叫在 [ a , b ] [a,b] [a,b]上可导

可导在几何上的含义:
图像很光滑(排除斜率垂直于x轴)

连续的含义是一笔画,你一笔画不一定很光滑,但是很光滑一定是一笔画的,那这样连续和可导的关系你就搞清楚了。

如果用代数表示的话:
可导:
l i m Δ x → 0 Δ y Δ x = 0 lim_{\Delta x\rightarrow 0}\frac{\Delta y}{\Delta x}=0 limΔx0ΔxΔy=0

连续:
l i m Δ x → 0 Δ y = 0 lim_{\Delta x\rightarrow 0}\Delta y=0 limΔx0Δy=0

可导比连续多了一个就是 Δ y \Delta y Δy Δ x \Delta x Δx趋于0的速度有要求了

切线和法线:
某点切线的斜率就是某点的导数 f ′ ( x 0 ) f'(x_0) f(x0),那么某点的法线就是垂直于切线的直线 − 1 f ′ ( x 0 ) -\frac{1}{f'(x_0)} f(x0)1

两条垂直的直线相乘斜率之积是-1。
在这里插入图片描述

切线和法线方程就是点斜式:

  • 切线方程: y − y 0 = f ′ ( x 0 ) ( x − x 0 ) y-y_0=f'(x_0)(x-x_0) yy0=f(x0)(xx0)
  • 法线方程: y − y 0 = − 1 f ′ ( x 0 ) ( x − x 0 ) y-y_0=-\frac{1}{f'(x_0)}(x-x_0) yy0=f(x0)1(xx0)

4.4 求导法则(含三角函数求导)

【1】 ( U ± V ) ′ = U ′ ± V ′ (U\pm V)'=U'\pm V' (U±V)=U±V
【2】 ( U V ) ′ = U ′ V + U V ′ (UV)'=U'V+UV' (UV)=UV+UV
【3】 ( U V ) ′ = U ′ V − U V ′ V 2 (\frac{U}{V})'=\frac{U'V-UV'}{V^2} (VU)=V2UVUV
【4】三角函数求导:

( s i n x ) ′ = c o s x (sinx)'=cosx (sinx)=cosx ( c o s x ) ′ = − s i n x (cosx)'=-sinx (cosx)=sinx
( t a n x ) ′ = s e c 2 x (tanx)'=sec^2x (tanx)=sec2x ( c o t x ) ′ = − c s c x (cotx)'=-cscx (cotx)=cscx
( s e c x ) ′ = s e c x t a n x (secx)'=secxtanx (secx)=secxtanx ( c s c x ) ′ = − − c s c x c o t x (cscx)'=--cscxcotx (cscx)=cscxcotx

(割=反弦分之一)

反三角函数的求导:

  • ( a r c s i n x ) ′ = 1 / √ ( 1 − x 2 ) (arcsinx)'=1/√(1-x^2) (arcsinx)=1/(1x2)
  • ( a r c c o s x ) ′ = − 1 / √ ( 1 − x 2 ) (arccosx)'=-1/√(1-x^2) (arccosx)=1/(1x2)
  • ( a r c t a n x ) ′ = 1 / ( 1 + x 2 ) (arctanx)'=1/(1+x^2) (arctanx)=1/(1+x2)
  • ( a r c c o t x ) ′ = − 1 / ( 1 + x 2 ) (arccotx)'=-1/(1+x^2) (arccotx)=1/(1+x2)

4.5 反函数求导

还记得我们在表示 f ′ ( x ) f'(x) f(x)的时候提到可以使用: d y d x \frac{dy}{dx} dxdy来代表吗?

反函数的意思就是:逆函数,y做自变量,x做因变量,表达式不变。(当然根据前面的学习,我们也知道需要满足一定条件的函数才能做到)

那么假如反函数存在的话,导数满足:
d y d x = 1 d x d y \frac{dy}{dx}=\frac{1}{\frac{dx}{dy}} dxdy=dydx1

举个例子:
我们有函数 y = x 2 y=x^2 y=x2,那么当 x > 0 x>0 x>0的时候有反函数 x = y x=\sqrt{y} x=y

d y d x = y ′ = 2 x \frac{dy}{dx}=y'=2x dxdy=y=2x

反函数的导数表达式 d x d y = 1 2 x \frac{dx}{dy}=\frac{1}{2x} dydx=2x1
因为 x = y x=\sqrt{y} x=y

所以有: x ′ = 1 2 y x'=\frac{1}{2\sqrt y} x=2y 1

如果我们从几何的角度上取研究反函数的导数的话,可以画图:

在这里插入图片描述


4.6 复合函数求导(链式法则)

定理层面:对于函数 u = g ( x ) u=g(x) u=g(x)在x处可导, y = f ( u ) y=f(u) y=f(u)在u处可导, y = f [ g ( x ) ] y=f[g(x)] y=f[g(x)]在x处可导

d y d x = f ′ ( u ) g ′ ( x ) = d y d u d u d x \frac{dy}{dx}=f'(u)g'(x)=\frac{dy}{du}\frac{du}{dx} dxdy=f(u)g(x)=dudydxdu

注意是谁对谁导

如果是复合再复合的话道理类似。


例:(1) y = l n ( s i n x ) y=ln(sinx) y=ln(sinx)

解:

d y d x = 1 s i n x ∗ c o s x = c o t x \frac{dy}{dx}=\frac{1}{sinx}*cosx=cotx dxdy=sinx1cosx=cotx

例:(2) y = ( 1 − 2 x 2 ) 1 3 y=(1-2x^2)^\frac{1}{3} y=(12x2)31

解:

d y d x = ( 1 + 2 x 2 ) − 2 3 ∗ 1 3 ∗ 4 x \frac{dy}{dx}=(1+2x^2)^{-\frac{2}{3}}*\frac{1}{3}*4x dxdy=(1+2x2)32314x


此后,我们会遇到一种很奇怪的题型: x x x x x x 次方,针对这种问题我们都是利用 e e e l n ln ln 来解题,优化之后再求导

例如: y = x x = e l n x x = e x l n x y=x^x=e^{lnx^x}=e^{xlnx} y=xx=elnxx=exlnx

我们看成一个复合函数来解决即可:
d y d x = e x l n x ∗ ( x ′ l n x + x ( l n x ) ′ ) = e x l n x ( l n x + 1 ) = x x ( l n x + 1 ) \frac{dy}{dx}=e^{xlnx}*(x'lnx+x(lnx)')=e^{xlnx}(lnx+1)=x^x(lnx+1) dxdy=exlnx(xlnx+x(lnx))=exlnx(lnx+1)=xx(lnx+1)

或者,我们可以尝试隐函数求导的方法:首先对两边同时取 l n ln ln (实际上这样操作的意义和上面的方法达成的目的是一致的,说的更直接这个是上面方法的通用版本),然后再求导。

l n y = x l n x lny=xlnx lny=xlnx

然后两边对 x x x同时求导,左边的话我们只需要把y看成一个对x的函数即可,这样就可以利用复合函数的方法了:

1 y ∗ y ′ = l n x + 1 \frac{1}{y}*y'=lnx+1 y1y=lnx+1
y ′ = x x ( l n x + 1 ) y'=x^x(lnx+1) y=xx(lnx+1)

需要时刻记住:x是自变量

如果升级版: y = x x x y=x^{x^x} y=xxx

一样的处理办法:
l n y = x x l n x lny=x^xlnx lny=xxlnx
1 y ∗ y ′ = ( x x ) ′ l n x + ( x x ) ∗ 1 x \frac{1}{y}*y'=(x^x)'lnx+(x^x)*\frac{1}{x} y1y=(xx)lnx+(xx)x1
y ′ = x x x [ x x ( l n x + 1 ) l n x + x x − 1 ] y'=x^{x^x}[x^x(lnx+1)lnx+x^{x-1}] y=xxx[xx(lnx+1)lnx+xx1]


4.7 高阶导数求导

假如我们只求一阶导数: y ′ = d y d x y'=\frac{dy}{dx} y=dxdy
假如高阶导数的话表达式:
d d y d x d x = d d x ( d y d x ) \frac{d\frac{dy}{dx}}{dx}=\frac{d}{dx}(\frac{dy}{dx}) dxddxdy=dxd(dxdy)
导完之后再导,就是求斜率的斜率…(套娃)

二阶导数我们也可以表示为: d 2 y d x = y ( 2 ) \frac{d^2y}{dx}=y^{(2)} dxd2y=y(2)

往往考高阶导数就是要寻觅n阶导数的规律所在。

例子:求 y = l n ( 1 + x ) y=ln(1+x) y=ln(1+x)的n阶导数

y ′ = 1 1 + x , y ′ ′ = − 1 ( 1 + x ) 2 , y ′ ′ ′ = 2 ( 1 + x ) 3 y'=\frac{1}{1+x},y''=-\frac{1}{(1+x)^2},y'''=\frac{2}{(1+x)^3} y=1+x1y=(1+x)21y=(1+x)32

所以n阶导数: y ( n ) = ( − 1 ) n − 1 ( n − 1 ) ! ( 1 + x ) n y^{(n)}=(-1)^{n-1}\frac{(n-1)!}{(1+x)^n} y(n)=(1)n1(1+x)n(n1)!


专题:杨辉三角的本质

为什么我们需要研究杨辉三角,用来解决 ( x + y ) n (x+y)^n (x+y)n的系数问题,我们在中学的时候都学习过,但却不知道原理是什么。
在这里插入图片描述
首先,我们把 ( x + y ) n (x+y)^n (x+y)n展开一下:
( x + y ) ( x + y ) . . . . ( x + y ) (x+y)(x+y)....(x+y) (x+y)(x+y)....(x+y),有n个 ( x + y ) (x+y) (x+y)相乘,当我们逐项展开的时候就变成了一个选择问题了,我们在每一个括号里面选一个元素,到底是选x还是y呢?

这个是 ( x + y ) n (x+y)^n (x+y)n的真实面目:

( x + y ) n = C n n x n + C n n − 1 x n − 1 y + . . . + C n 0 y n (x+y)^n=C^n_nx^n+C^{n-1}_nx^{n-1}y+...+C^0_ny^n (x+y)n=Cnnxn+Cnn1xn1y+...+Cn0yn

我们想一下,为什么杨辉三角是相加,不是相乘,相减或者相除呢?

我们把 ( x + y ) 3 (x+y)^3 (x+y)3 ( x + y ) 4 (x+y)^4 (x+y)4展开就明白了。

( x + y ) 3 = x 3 + 3 x 2 y + 3 x y 2 + y 3 (x+y)^3=x^3+3x^2y+3xy^2+y^3 (x+y)3=x3+3x2y+3xy2+y3
( x + y ) 4 = ( x + y ) 3 ( x + y ) = ( x 3 + 3 x 2 y + 3 x y 2 + y 3 ) ( x + y ) (x+y)^4=(x+y)^3(x+y)=(x^3+3x^2y+3xy^2+y^3)(x+y) (x+y)4=(x+y)3(x+y)=(x3+3x2y+3xy2+y3)(x+y)

以后需要记住这个结论:
( U + V ) n = ∑ k = 0 n C n k ( U n − k ∗ V k ) (U+V)^n=\sum^n_{k=0}C^k_n(U^{n-k}*V^k) (U+V)n=k=0nCnk(UnkVk)


很巧,高阶导数的推导也类似:

( U V ) ( n ) = ∑ k = 0 n C n k ( U ( n − k ) ∗ V ( k ) ) (UV)^{(n)}=\sum^n_{k=0}C^k_n(U^{(n-k)}*V^{(k)}) (UV)(n)=k=0nCnk(U(nk)V(k))

排列组合公式:
在这里插入图片描述

但是: ( U + V ) ( n ) = U ( n ) + V ( n ) (U+V)^{(n)}=U^{(n)}+V^{(n)} (U+V)(n)=U(n)+V(n)


例题:已知 y = x 2 e 2 x y=x^2e^{2x} y=x2e2x,求 y ( 20 ) y^{(20)} y(20)

解:

U = x 2 U=x^2 U=x2 V = e 2 x V=e^{2x} V=e2x
U ( k ) = 2 x ∣ 2 ∣ 0 U^{(k)}=2x|2|0 U(k)=2x20
V ( k ) = 2 n e 2 x V^{(k)}=2^ne^{2x} V(k)=2ne2x

根据 ( U V ) ( k ) = ∑ k = 0 n C n k ( U ( n − k ) ∗ V ( k ) ) (UV)^{(k)}=\sum^n_{k=0}C^k_n(U^{(n-k)}*V^{(k)}) (UV)(k)=k=0nCnk(U(nk)V(k))

在这里插入图片描述

可得:
在这里插入图片描述


4.8 隐函数求导

对于隐函数求导的方法,和上文的对两边求导的方法有异曲同工之妙,对于隐函数我们必须时刻明确什么是自变量,什么是因变量。

记住:两边同时对x求导

举个例子, e y + x y − e = 0 e^y+xy-e=0 ey+xye=0,求 d y d x \frac{dy}{dx} dxdy,两边同时对x求导,把y看成是x的函数,也就是说y其实也是带x的一个复合表达式而已,我们需要用链式法则对其进行处理。

所以有: y ’ e y + ( x ) ’ y + x y ’ = 0 y’e^y+(x)’y+xy’=0 yey+(x)y+xy=0,也就是: y ’ e y + y + x y ’ = 0 y’e^y+y+xy’=0 yey+y+xy=0,所以有: d y d x = − y e y + x \frac{dy}{dx}=\frac{-y}{e^y+x} dxdy=ey+xy

再例如: y 5 + 2 y − x − 3 x 7 = 0 y^5+2y-x-3x^7=0 y5+2yx3x7=0

隐函数求导这里,我们的结果如果带着y也是可以的。
对上式两边的x进行求导:
y ′ ∗ 5 y 4 + 2 ∗ y ′ − 1 − 21 x 6 = 0 y'*5y^4+2*y'-1-21x^6=0 y5y4+2y121x6=0

化简可得:
y ′ = 21 x 6 + 1 5 y 4 + 2 y'=\frac{21x^6+1}{5y^4+2} y=5y4+221x6+1

再比如,我们对圆方程进行求导:
x 2 16 + y 2 9 = 1 \frac{x^2}{16}+\frac{y^2}{9}=1 16x2+9y2=1

两边同时对x进行求导:
x 8 + 2 y ∗ y ′ 9 = 0 \frac{x}{8}+\frac{2y*y'}{9}=0 8x+92yy=0
y ′ = − 9 x 16 y y'=-\frac{9x}{16y} y=16y9x

如果几何上表示出来的话:
如果我们需要求 ( 2 , 3 3 2 ) (2,\frac{3\sqrt{3}}{2}) 2233 该点的切线方程的方程的话:
y ′ ∣ ( 2 , 3 3 2 ) = − 3 4 y'|_{(2,\frac{3\sqrt{3}}{2})}=-\frac{\sqrt{3}}{4} y(2233 )=43

y − 3 3 2 = − 3 4 ( x − 2 ) y-\frac{3\sqrt{3}}{2}=-\frac{\sqrt{3}}{4}(x-2) y233 =43 (x2)

同理的,如果我们需要求出隐函数的二阶导数的话,对以下函数求 y ′ ′ y'' y

x − y + 1 2 s i n y = 0 x-y+\frac{1}{2}siny=0 xy+21siny=0
1 − y ′ + 1 2 c o s y ∗ y ′ = 0 1-y'+\frac{1}{2}cosy*y'=0 1y+21cosyy=0
y ′ = 2 2 − c o s y y'=\frac{2}{2-cosy} y=2cosy2
y ′ ′ = − 2 s i n y ∗ y ′ ( 2 − c o s y ) 2 y''=-\frac{2siny*y'}{(2-cosy)^2} y=(2cosy)22sinyy

再把 y ′ y' y代入:
y ′ ′ = − 4 s i n y ( 2 − c o s y ) 3 y''=-\frac{4siny}{(2-cosy)^3} y=(2cosy)34siny


关于取e和ln法的应用的一般情况:

  • 如果底数和次方都有自变量的时候,我们就要用这种方法。
  • 多项式函数

例题:求 y ′ y' y
y = x s i n x y=x^{sinx} y=xsinx

解:

首先,两边同时取ln
l n y = l n ( x s i n x ) = s i n x l n x lny=ln(x^{sinx})=sinxlnx lny=ln(xsinx)=sinxlnx
这样就变成一个隐函数了,我们就可以利用隐函数求导的方法来对他进行处理:

y ′ y = ( s i n x ) ′ l n x + s i n x ( l n x ) ′ = c o s x l n x + s i n x x \frac{y'}{y}=(sinx)'lnx+sinx(lnx)'=cosxlnx+\frac{sinx}{x} yy=(sinx)lnx+sinx(lnx)=cosxlnx+xsinx
y ′ = x s i n x ( c o s x l n x + s i n x x ) y'=x^{sinx}(cosxlnx+\frac{sinx}{x}) y=xsinx(cosxlnx+xsinx)


例题:求 y ′ y' y
y = ( x − 1 ) ( x − 2 ) ( x − 3 ) ( x − 4 ) y=\sqrt{\frac{(x-1)(x-2)}{(x-3)(x-4)}} y=(x3)(x4)(x1)(x2)

解:

l n y = 1 2 [ l n ( x − 1 ) + l n ( x − 2 ) − l n ( x − 3 ) − l n ( x − 4 ) ] lny=\frac{1}{2}[ln(x-1)+ln(x-2)-ln(x-3)-ln(x-4)] lny=21[ln(x1)+ln(x2)ln(x3)ln(x4)]

需要注意的是:当我们使用取ln法的时候,需要满足自变量 > 0 >0 >0

但是ln法求出来的导数只能满足在 y > 0 y>0 y>0的时候成立

©️2020 CSDN 皮肤主题: 程序猿惹谁了 设计师:上身试试 返回首页