第二话:微分与函数【考研数学:高等数学】(基础版)

讲义修订日期:2020年9月2日

讲义目录:

微分

  • 【1】微分的定义
  • 【2】求微分
  • 【3】隐函数求微分
  • 【4】微分的应用(近似计算)
  • 【5】微分中值定理
  • 【6】泰勒定理
  • 【7】洛必达法则

函数

  • 【1】函数的单调性和凹凸性
  • 【2】函数的最值和极值
  • 【3】函数的渐近线

1. 微分

1.1 微分的定义

微分到底在研究什么:

我们在研究导数(微商),实际上在研究函数在变化上的特征,更加具体的是特征的变化率,那么微分研究的是这个变化在微观上的表示到底是怎样的(微观上的变化值)。

我们可以理解求微分,实际上就是求 Δ y \Delta y Δy,对于一个函数有改变量 Δ x Δ y \Delta x\Delta y ΔxΔy,那么可以表达为:
Δ y = f ( x 0 + Δ x ) − f ( x 0 ) \Delta y=f(x_0+\Delta x)-f(x_0) Δy=f(x0+Δx)f(x0)

这个 Δ y \Delta y Δy 并没有我们想象中的那么好算,而且在有的时候,我们可能并不需要这么精确的数值,我们需要一个近似的数值来表达 Δ y \Delta y Δy 即可。

举个例子:
比如,已知 f ( x ) = x 2 f(x)=x^2 f(x)=x2,当 x 0 → x 0 + Δ x x_0\rightarrow x_0+\Delta x x0x0+Δx Δ y \Delta y Δy是什么呢?我们在几何上表示出来:

在这里插入图片描述
Δ S \Delta S ΔS的表达上,我们可以发现实际上 Δ x 2 \Delta x^2 Δx2的比重是很小的,我们可以忽略掉

所以微分的定义是:

f ( x ) f(x) f(x) x 0 x_0 x0 邻域内有定义, Δ x \Delta x Δx x 0 + Δ x x_0+\Delta x x0+Δx 在邻域内,那么对于 Δ y = f ( x 0 + Δ x ) − f ( x 0 ) \Delta y=f(x_0+\Delta x)-f(x_0) Δy=f(x0+Δx)f(x0) 可以表达成通式: Δ y = A Δ x + o ( Δ x ) \Delta y=A \Delta x+o(\Delta x) Δy=AΔx+o(Δx)

A就相当于一个常数,一个和 x 0 x_0 x0有关的常数,与 Δ x \Delta x Δx无关。

重点:A 只和 x 0 x_0 x0 有关,与 Δ x \Delta x Δx无关

需要注意的是,现在我们看到的 Δ y \Delta y Δy是精确值,但是 d y dy dy 是个近似值。

d y = A Δ x dy=A\Delta x dy=AΔx
d y = f ′ ( x 0 ) Δ x dy=f'(x_0)\Delta x dy=f(x0)Δx
f ( x ) f(x) f(x) x 0 x_0 x0 上可微 ⇐ ⇒ \Leftarrow \Rightarrow f ( x ) f(x) f(x) x 0 x_0 x0 上可微

A这个常数就是 f ( x ) f(x) f(x) x 0 x_0 x0 上的导数值。所以可微必可导,可导比可微。

求微分,实际上是求在某点的改变量表达式


例题: f ( x ) = x 2 f(x)=x^2 f(x)=x2,求 x = 2 x=2 x=2处的微分, Δ x = 0.01 \Delta x=0.01 Δx=0.01,问改变量和微分值。

首先,必须明白,改变量 Δ y \Delta y Δy是个精确值,但是 d y dy dy是个近似值

Δ y = f ( x 0 + Δ x ) − f ( x 0 ) \Delta y=f(x_0+\Delta x)-f(x_0) Δy=f(x0+Δx)f(x0)
d y = f ′ ( x 0 ) Δ x dy=f'(x_0)\Delta x dy=f(x0)Δx

d x dx dx 就是 Δ x \Delta x Δx,是一个准确值。


改变量和微分值在几何上的表示:
在这里插入图片描述


1.2 求微分

基本的求微分公式和求导公式类似,包括四则运算。

  • Δ y = f ′ ( x 0 ) Δ x + o ( Δ x ) = f ( x 0 + Δ x ) − f ( x 0 ) \Delta y=f'(x_0)\Delta x+o(\Delta x)=f(x_0+\Delta x)-f(x_0) Δy=f(x0)Δx+o(Δx)=f(x0+Δx)f(x0)
  • d y = f ′ ( x 0 ) Δ x dy=f'(x_0)\Delta x dy=f(x0)Δx
  • d C = 0 dC=0 dC=0
  • d ( U ± V ) = V d U ± U d V d(U\pm V)=VdU\pm UdV d(U±V)=VdU±UdV
  • d U V = V d U − U d V V 2 d\frac{U}{V}=\frac{VdU-UdV}{V^2} dVU=V2VdUUdV

掌握微分的四则运算对于我们解决一些直接求导比较复杂的公式有帮助作用。

比如:
在这里插入图片描述


1.3 隐函数求微分

和我们在处理导数的时候方式类似,两边同时对x求(导/微分)
(只有当我们把y看成x的时候处理才需要外加 y ′ y' y

例题: x 2 + 2 y − y 2 = 2 x x^2+2y-y^2=2x x2+2yy2=2x

2 x + 2 y ′ − 2 y y ′ = 2 2x+2y'-2yy'=2 2x+2y2yy=2 化简: x + y ′ − y ′ y = 1 x+y'-y'y=1 x+yyy=1 可求出: y ′ = 1 − x 1 − y y'=\frac{1-x}{1-y} y=1y1x,那么 d y = y ′ Δ x = 1 − x 1 − y Δ x dy=y'\Delta x=\frac{1-x}{1-y}\Delta x dy=yΔx=1y1xΔx


1.4 微分的应用:近似计算

近似计算的精髓就在于我们之前说过的对于 d y dy dy是近似值的问题上:
f ( x 0 + Δ x ) = f ( x 0 ) + Δ y f(x_0+\Delta x)=f(x_0)+\Delta y f(x0+Δx)=f(x0)+Δy
利用近似计算,我们能求出: f ( x + x 0 ) f(x+x_0) f(x+x0)

但我们也知道 Δ y \Delta y Δy不好算,我们可以用 d y dy dy 代替。

例如,我们要求: 3 997 = 3 1000 − 3 ^3\sqrt{997}=^3\sqrt{1000-3} 3997 =310003

我们想一下,这样可以吗:

Δ x = 3 \Delta x=3 Δx=3

不可以,因为,这样的误差会非常大,我们需要缩放到 Δ x → 0 \Delta x\rightarrow 0 Δx0

至少到0.001级别

我们可以这样处理: 3 997 = 3 1000 − 3 = 1 0 3 1 − 0.003 ^3\sqrt{997}=^3\sqrt{1000-3}=10^3\sqrt{1-0.003} 3997 =310003 =10310.003 Δ x = 0.003 \Delta x=0.003 Δx=0.003

f ′ ( x ) = 1 3 x − 2 3 f'(x)=\frac{1}{3}x^{-\frac{2}{3}} f(x)=31x32 x = 1 , d y = f ′ ( 1 ) Δ x x=1,dy=f'(1)\Delta x x=1dy=f(1)Δx

3 997 = 10 ∗ ( 1 − 0.003 3 ) = 9.999 ^3\sqrt{997}=10*(1-\frac{0.003}{3})=9.999 3997 =10(130.003)=9.999

验证一下:

9.99 9 3 = 999.7 9.999^3=999.7 9.9993=999.7

非常接近了,放缩的倍数越大,就越接近精确值

总体的处理步骤:

  • 先分离
  • 再放缩

1.5 微分中值定理(非常重要)

费马引理

我们先从费马引理开始说起:

f ( x ) f(x) f(x) x 0 x_0 x0的邻域内 U ( x 0 ) U(x_0) U(x0) 有定义,而且在 x 0 x_0 x0处可导,如果有 f ( x ) ≤ f ( x 0 ) f(x)\leq f(x_0) f(x)f(x0)(最大值), ∀ x ∈ U ( x 0 ) \forall x \in U(x_0) xU(x0),则有 f ′ ( x 0 ) = 0 f'(x_0)=0 f(x0)=0

在几何上反映出来就很简单了:
在这里插入图片描述

证明也非常简单:
f − ′ ( x 0 ) = l i m Δ x → 0 f ( x 0 + Δ x ) − f ( x 0 ) Δ x > = 0 f'_-(x_0)=lim_{\Delta x\rightarrow 0}\frac{f(x_0+\Delta x)-f(x_0)}{\Delta x}>=0 f(x0)=limΔx0Δxf(x0+Δx)f(x0)>=0

f + ′ ( x 0 ) = l i m Δ x → 0 f ( x 0 + Δ x ) − f ( x 0 ) Δ x < = 0 f'_+(x_0)=lim_{\Delta x\rightarrow 0}\frac{f(x_0+\Delta x)-f(x_0)}{\Delta x}<=0 f+(x0)=limΔx0Δxf(x0+Δx)f(x0)<=0

因为可导,所以,只能满足 f ′ ( x 0 ) = 0 f'(x_0)=0 f(x0)=0

我们定义:导数为 0 的点叫做驻点
在这里插入图片描述
并且需要注意的是,驻点和最值点并没有什么必然的联系!!


罗尔定理

在费马引理的基础上,我们来看罗尔定理:

条件:函数满足

【1】在 [ a , b ] [a,b] [a,b]连续(一笔画)

【2】在 ( a , b ) (a,b) (a,b)可导(光滑)

【3】 f ( a ) = f ( b ) f(a)=f(b) f(a)=f(b)

那么,则可以得到:至少 ∃ h ∈ ( a , b ) \exists h\in(a,b) h(a,b),满足 f ′ ( h ) = 0 f'(h)=0 f(h)=0

在几何上的表示:
在这里插入图片描述


拉格朗日中值定理

所谓“中值”:在区间中的值

在罗尔定理的基础上,我们继续看拉格朗日定理:

条件:函数满足

【1】 [ a , b ] [a,b] [a,b]连续

【2】 ( a , b ) (a,b) (a,b)可导

那么,则可以得到:至少 ∃ h ∈ ( a , b ) \exists h\in(a,b) h(a,b),满足 f ( b ) − f ( a ) = f ′ ( h ) ( b − a ) f(b)-f(a)=f'(h)(b-a) f(b)f(a)=f(h)(ba)

f ′ ( h ) = f ( b ) − f ( a ) b − a f'(h)=\frac{f(b)-f(a)}{b-a} f(h)=baf(b)f(a)
在几何上的表示:
在这里插入图片描述


柯西中值定理

和之前的罗尔定理和拉格朗日中值定理不一样的是,我们的柯西中值定理更一般化了,之前我们研究的是一个函数在区间某个点的和区间端点的关系,现在研究的两个函数当拥有相同区间时,他们之间的共性。

利用柯西中值定理可以推理拉格朗日,拉格朗日可以推罗尔

条件:有两个函数 f ( x ) f(x) f(x) F ( x ) F(x) F(x) 同时满足:

【1】 [ a , b ] [a,b] [a,b] 连续

【2】 ( a , b ) (a,b) (a,b) 可导

那么,则可以得到: ∃ h \exists h h 满足
f ( b ) − f ( a ) F ( b ) − F ( a ) = f ′ ( h ) F ′ ( h ) \frac{f(b)-f(a)}{F(b)-F(a)}=\frac{f'(h)}{F'(h)} F(b)F(a)f(b)f(a)=F(h)f(h)

证明:

对于任意函数有
{ x = A ( t ) y = B ( t ) \begin{cases}x=A(t)\\y=B(t)\end{cases} {x=A(t)y=B(t)
d y d x = d y / d t d x / d t = A ′ ( t ) B ′ ( t ) \frac{dy}{dx}=\frac{dy/dt}{dx/dt}=\frac{A'(t)}{B'(t)} dxdy=dx/dtdy/dt=B(t)A(t)

在上面的柯西条件【1】【2】下有:
A ′ ( t ) B ′ ( t ) = A ( b ) − A ( a ) B ( b ) − B ( a ) \frac{A'(t)}{B'(t)}=\frac{A(b)-A(a)}{B(b)-B(a)} B(t)A(t)=B(b)B(a)A(b)A(a)

证毕


1.6 泰勒定理

我们回顾一下,我们对于微分的定义:
f ( x 1 ) − f ( x 0 ) = Δ y ≈ d y = f ′ ( x 0 ) Δ x f(x_1)-f(x_0)=\Delta y\approx dy=f'(x_0)\Delta x f(x1)f(x0)=Δydy=f(x0)Δx

x 1 = x 0 + Δ x x_1=x_0+\Delta x x1=x0+Δx

假如我们将 x 1 x_1 x1 看成自变量 x x x,我们对于 f ( x ) f(x) f(x) 就有如下的表述:

f ( x ) ≈ f ( x 0 ) + f ′ ( x 0 ) ( x − x 0 ) f(x)\approx f(x_0)+f'(x_0)(x-x_0) f(x)f(x0)+f(x0)(xx0)

也就是说当前,我们用的是一个一次函数来表示任意一个函数,我们思考一下,这样是存在误差的,我们可否找到其他的表示方法能把这个误差缩小呢?

所以,我们将会探索用 n n n 次的多项式来表示一个 f ( x ) f(x) f(x) ,使得误差更小。

思考下面的问题:
【1】什么条件下我们可以用 n n n 次的多项式?
【2】这个多项式是什么?
【3】误差到底有多大?

根据微分的定义,我们可以发现,在不断的求导下,误差会逐渐缩小。由此,我们有以下的泰勒表达通式(拉格朗日型泰勒公式):

f ( x ) = f ( x 0 ) + f ′ ( x 0 ) 1 ! ( x − x 0 ) + f ′ ′ ( x 0 ) 2 ! ( x − x 0 ) 2 + . . . + f ( n ) ( x 0 ) n ! ( x − x 0 ) n + R n ( x ) f(x)=f(x_0)+\frac{f'(x_0)}{1!}(x-x_0)+\frac{f''(x_0)}{2!}(x-x_0)^2+...+\frac{f^{(n)}(x_0)}{n!}(x-x_0)^n+R_n(x) f(x)=f(x0)+1!f(x0)(xx0)+2!f(x0)(xx0)2+...+n!f(n)(x0)(xx0)n+Rn(x)

最后的 R n R_n Rn 余项就是误差,往往这个误差相当小,我们无需理会,不是我们研究的重点。如果我们硬要表示的话也不是不行:
R n ( x ) = f ( n + 1 ) ( h ) ( n + 1 ) ! ( x − x 0 ) n + 1 h ∈ ( x 0 , x 0 + Δ x ) R_n(x)=\frac{f^{(n+1)}(h)}{(n+1)!}(x-x_0)^{n+1}\\ h\in(x_0,x_0+\Delta x) Rn(x)=(n+1)!f(n+1)(h)(xx0)n+1h(x0,x0+Δx)
说白了,h就是在 h ∈ ( x 0 , x ) h\in(x_0,x) h(x0,x)

余项一定是趋于0的,为什么呢?

首先,这个高阶导一旦被一个区间束缚了就一定是有界的:

∣ f ( n + 1 ) ( x ) ∣ ≤ M |f^{(n+1)}(x)|\leq M f(n+1)(x)M

我们不难看出:

∣ R n ( x ) ∣ ≤ M ∣ x − x 0 ∣ n + 1 ( n + 1 ) ! |R_n(x)|\leq \frac{M|x-x_0|^{n+1}}{(n+1)!} Rn(x)(n+1)!Mxx0n+1
在这里插入图片描述

x → x 0 x\rightarrow x_0 xx0的时候,分母下的部分趋于无穷大,M是有界的, ∣ x − x 0 ∣ n + 1 |x-x_0|^{n+1} xx0n+1 趋于0,所以整体就趋于0了


对于这个拉格朗日型泰勒公式,当 x 0 = 0 x_0=0 x0=0 的时候,就变成一个马克劳林公式

f ( x ) = f ( x 0 ) + f ′ ( x 0 ) 1 ! ( x − x 0 ) + f ′ ′ ( x 0 ) 2 ! ( x − x 0 ) 2 + . . . + f ( n ) ( x 0 ) n ! ( x − x 0 ) n + R n ( x ) f(x)=f(x_0)+\frac{f'(x_0)}{1!}(x-x_0)+\frac{f''(x_0)}{2!}(x-x_0)^2+...+\frac{f^{(n)}(x_0)}{n!}(x-x_0)^n+R_n(x) f(x)=f(x0)+1!f(x0)(xx0)+2!f(x0)(xx0)2+...+n!f(n)(x0)(xx0)n+Rn(x)

马克劳林公式:
f ( x ) = f ( 0 ) + f ′ ( 0 ) 1 ! ( x ) + f ′ ′ ( 0 ) 2 ! ( x ) 2 + . . . + f ( n ) ( 0 ) n ! ( x ) n + R n ( x ) f(x)=f(0)+\frac{f'(0)}{1!}(x)+\frac{f''(0)}{2!}(x)^2+...+\frac{f^{(n)}(0)}{n!}(x)^n+R_n(x) f(x)=f(0)+1!f(0)(x)+2!f(0)(x)2+...+n!f(n)(0)(x)n+Rn(x)

考试的时候,我们会更加侧重考马克劳林公式(因为更简单嘛)


例题:把以下表达式用n阶的马克老林公式表示出来: f ( x ) = e x f(x)=e^x f(x)=ex

e x ≈ 1 + x + x 2 2 ! + . . . + x n n ! e^x\approx 1+x+\frac{x^2}{2!}+...+\frac{x^n}{n!} ex1+x+2!x2+...+n!xn

在几何上的感觉就是:
在这里插入图片描述


1.7 洛必达法则

洛必达法则非常重要,用来解决极限问题,有两种:一种是 0 0 \frac{0}{0} 00 型, 一种是 ∞ ∞ \frac{\infty}{\infty} 型。

证明洛必达法则可以用柯西证明,这里就略了。

对于洛必达法则的表达 :
l i m x → x 0 f ( x ) g ( x ) = l i m x → x 0 f ′ ( x ) g ′ ( x ) l i m x → x 0 f ′ ′ ( x ) g ′ ′ ( x ) lim_{x\rightarrow x_0}\frac{f(x)}{g(x)}=lim_{x\rightarrow x_0}\frac{f'(x)}{g'(x)}lim_{x\rightarrow x_0}\frac{f''(x)}{g''(x)} limxx0g(x)f(x)=limxx0g(x)f(x)limxx0g(x)f(x)

无穷比无穷的处理办法和零比零类似,我们只需要求导直到不再是无穷比无穷或者零比零即可

一般考洛必达的是结合等价无穷小的替换来考的。


例题:
(1)
l i m x → 0 x − s i n x x 2 s i n x lim_{x\rightarrow 0}\frac{x-sinx}{x^2sinx} limx0x2sinxxsinx
(2)
l i m x → + ∞ l n x x lim_{x\rightarrow +\infty}\frac{lnx}{\sqrt{x}} limx+x lnx
(3)
l i m x → + ∞ x n e λ x lim_{x\rightarrow +\infty}\frac{x^n}{e^{\lambda x}} limx+eλxxn

(1)
l i m x → 0 x − s i n x x 2 s i n x = l i m x → 0 x − s i n x x 3 = l i m x → 0 1 − c o s x 3 x 2 = 1 6 lim_{x\rightarrow 0}\frac{x-sinx}{x^2sinx}=lim_{x\rightarrow 0}\frac{x-sinx}{x^3}=lim_{x\rightarrow 0}\frac{1-cosx}{3x^2}=\frac{1}{6} limx0x2sinxxsinx=limx0x3xsinx=limx03x21cosx=61
(2)
l i m x → + ∞ l n x x = l i m x → + ∞ x 1 2 x = 0 lim_{x\rightarrow +\infty}\frac{lnx}{\sqrt{x}}=lim_{x\rightarrow +\infty}\frac{x}{\frac{1}{2\sqrt{x}}}=0 limx+x lnx=limx+2x 1x=0
(3)
l i m x → + ∞ x n e λ x = l i m x → + ∞ n x n − 1 λ e λ x = l i m x → + ∞ n ( n − 1 ) x n − 2 λ 2 e λ x = . . . = l i m x → + ∞ n ! λ n e λ x = 0 lim_{x\rightarrow +\infty}\frac{x^n}{e^{\lambda x}}=lim_{x\rightarrow +\infty}\frac{nx^{n-1}}{\lambda e^{\lambda x}}=lim_{x\rightarrow +\infty}\frac{n(n-1)x^{n-2}}{\lambda^2 e^{\lambda x}}=...=lim_{x\rightarrow +\infty}\frac{n!}{\lambda^n e^{\lambda x}}=0 limx+eλxxn=limx+λeλxnxn1=limx+λ2eλxn(n1)xn2=...=limx+λneλxn!=0

第三种是含参数或者有n的函数极限的解法。


2. 函数

2.1 函数的单调性和凹凸性

单调性

单调性就好理解了:

  • 增: f ′ ( x ) > 0 f'(x)>0 f(x)>0
  • 减: f ′ ( x ) < 0 f'(x)<0 f(x)<0

关于增减性的分界点,一共有两类:

  • 导数不存在的点
  • f ′ ( x ) = 0 f'(x)=0 f(x)=0 的驻点

例题: f ( x ) = x 3 − 3 x f(x)=x^3-3x f(x)=x33x 问增减性

解:

首先函数定义域: ( − ∞ , + ∞ ) (-\infty,+\infty) (,+)
然后找出驻点: f ′ ( x ) = 3 x 2 − 3 = 0 f'(x)=3x^2-3=0 f(x)=3x23=0 x = ± 1 x=\pm1 x=±1

分界点: x = 1 x=1 x=1 x = − 1 x=-1 x=1

我们画一个表格:
在这里插入图片描述


例题: f ( x ) = x − 3 2 x 2 3 f(x)=x-\frac{3}{2}x^{\frac{2}{3}} f(x)=x23x32,问增减性

解:

首先,找出分界点,两类,一类是驻点,这个好算,还有就是导数不存在的点,比如可以让导函数无意义的点。

f ′ ( x ) = 1 − 1 x 1 3 f'(x)=1-\frac{1}{x^\frac{1}{3}} f(x)=1x311
驻点: x = 1 x=1 x=1 x = 0 x=0 x=0,导数不存在的点

然后表格分析即可:
在这里插入图片描述


还有一种题型,利用单调性来验证不等式

例题:已知 x > 1 x>1 x>1,证明不等式: 2 x > 3 − 1 3 2\sqrt{x}>3-\frac{1}{3} 2x >331

证明:

首先构造不等式:
f ( x ) = 2 x − 3 + 1 x f(x)=2\sqrt{x}-3+\frac{1}{x} f(x)=2x 3+x1
求导: f ′ ( x ) = 1 x − 1 x 2 > 0 f'(x)=\frac{1}{\sqrt{x}}-\frac{1}{x^2}>0 f(x)=x 1x21>0

所以原函数增, f ( 1 ) = 0 f(1)=0 f(1)=0

f ( x ) > f ( 1 ) = 0 f(x)>f(1)=0 f(x)>f(1)=0


凹凸性:

我们再来看凹凸性,一般来说单调和凹凸是一起考的。
在这里插入图片描述
我们更加关注的是,凹凸性在代数上的特征:

  • 凹: f ( x 1 + x 2 2 ) < f ( x 1 ) + f ( x 2 ) 2 f(\frac{x_1+x_2}{2})<\frac{f(x_1)+f(x_2)}{2} f(2x1+x2)<2f(x1)+f(x2)
  • 凸: f ( x 1 + x 2 2 ) > f ( x 1 ) + f ( x 2 ) 2 f(\frac{x_1+x_2}{2})>\frac{f(x_1)+f(x_2)}{2} f(2x1+x2)>2f(x1)+f(x2)

需要注意的是,上面我们说的是凹凸性的特征,和增减性的特征一样,意思是我们判断出凹凸性之后才能 使用的代数表达,我们如果要判断凹凸的话,需要用到导数的进行判断:

因为凹凸性就是导函数的单调性的反映。

在这里插入图片描述
我们把上面研究增减性的反映到导函数上即可。


凹凸性的分界点( 拐点):

  • f ′ ′ ( x ) = 0 f''(x)=0 f(x)=0
  • f ′ ( x ) f'(x) f(x) 不存在的点

例题: y = x e − x y=xe^{-x} y=xex 定义域 ( − ∞ , + ∞ ) (-\infty,+\infty) (,+),问凹凸性

y ′ = e − x ( 1 − x ) y'=e^{-x}(1-x) y=ex(1x) y ′ ′ = e − x ( x − 2 ) y''=e^{-x}(x-2) y=ex(x2)
y ′ ′ = 0 y''=0 y=0 x = 2 x=2 x=2
在这里插入图片描述


这里有个易错点的概念理解:驻点,一定是导数等于0 的点,但是拐点却不一定是二阶导数等于0的点,还包括二阶导数不存在的点


利用凹凸性我们一样可以验证不等式:

例题: e a + e b 2 > e a + b 2 , a ≠ b \frac{e^a+e^b}{2}>e^{\frac{a+b}{2}},a\neq b 2ea+eb>e2a+ba=b

证明:

首先,我看到这个不等式,脑子里面首先浮现出拉格朗日定理,但是呢,实际上凹凸性特征就是利用拉格朗日定理证明出来的。所以,我们完全可以利用凹凸性的特征来解决这个不等式的证明:

思路也非常清晰了:

  • 第一步:证明凹凸性
  • 第二步:再利用凹凸性的性质处理不等式

如果根据凹凸性的特征的代数形式,我们很容易联想到: f ( x ) = e x f(x)=e^x f(x)=ex

f ′ ′ ( x ) = e x > 0 f''(x)=e^x>0 f(x)=ex>0

呈现的是凹函数。利用特征代数即可表示:

f ( a + b 2 ) < f ( a ) + f ( b ) 2 f(\frac{a+b}{2})<\frac{f(a)+f(b)}{2} f(2a+b)<2f(a)+f(b)


2.2 函数的最值和极值

极值

先看极值,极值是一个局部的概念,通常我们是不考虑端点之流的问题,更准确的来说,我们的极值这个概念是定义再一个邻域里头的。

定理: f ( x ) f(x) f(x) x 0 x_0 x0可导,且在 x 0 x_0 x0处取极值,有: f ′ ( x 0 ) = 0 f'(x_0)=0 f(x0)=0

证明也很简单:
在这里插入图片描述
这种现象我们在以后的证明题里面会用到:左导不等于右导,但是又有导数存在,那么导数只能等于0。

极值和驻点(导数等于0的点)的关系
我们只满足极值 → \rightarrow 驻点,有的驻点也不是极值点:
比如这个:
在这里插入图片描述
记住下面的规律:
【1】可导函数的极值点是驻点
【2】驻点不一定是极值点
【3】极值点一定是驻点或者是导数不存在的点
【4】驻点,导数不存在的点未必都是极值点


那怎样判断极值点呢?

我们用下面的定理判断:
定理:已知 f ( x ) f(x) f(x) x 0 x_0 x0的去心邻域内可导, f ′ ( x 0 ) = 0 f'(x_0)=0 f(x0)=0或者不存在

我们还需要看该 x 0 x_0 x0点两边的增减性来加以判断该点是否是极值点。

那么,求极值的步骤也很清晰了:

  • 第一步:求定义域
  • 第二步:求导数等于0或者导数不存在的点,再考究两边的增减性,然后判断

例题: y = ( x − 1 ) 2 ( x + 1 ) 3 y=(x-1)^2(x+1)^3 y=(x1)2(x+1)3求极值点

解:

首先求出定义域: ( − ∞ , + ∞ ) (-\infty,+\infty) (,+)
y ′ = ( x − 1 ) ( x + 1 ) 2 ( 5 x − 1 ) y'=(x-1)(x+1)^2(5x-1) y=(x1)(x+1)2(5x1)
y ′ = 0 y'=0 y=0 x = − 1 , 1 5 , 1 x=-1,\frac{1}{5},1 x=1,51,1

然后列表:
在这里插入图片描述

判断极值我们可以利用二阶导的正负进行辅助判断, f ′ ′ ( x 0 ) > 0 f''(x_0)>0 f(x0)>0,极小值, f ′ ′ ( x 0 ) < 0 f''(x_0)<0 f(x0)<0,极大值,假如等于0,那么可能是极小值也可能是极大值。


最值

判断最值和极值类似,只有一个不同的地方,我们判断极值点的时候,找分界点,只需要找驻点和导数不存在的点,在求最值的时候,我们需要增加求的分界点还有端点,但是实际上对于端点是最值的情况还是比较特殊的,比如单调函数,才会出现这种情况。

分界点:
【1】驻点
【2】导数不存在的点
【3】端点


例题: x ∈ [ − 3 , 4 ] x\in[-3,4] x[3,4]
y = 2 x 3 + 3 x 2 − 12 x + 14 y=2x^3+3x^2-12x+14 y=2x3+3x212x+14

解:

y ′ = 6 ( x + 2 ) ( x − 1 ) y'=6(x+2)(x-1) y=6(x+2)(x1)
x = − 2 , x = 1 x=-2,x=1 x=2,x=1

我们研究的分界点有: f ( − 3 ) , f ( − 2 ) , f ( 1 ) , f ( 4 ) f(-3),f(-2),f(1),f(4) f(3),f(2),f(1),f(4)
从中找最值点


2.3 函数的渐近线

渐近线分三种:水平,垂直,斜的
在这里插入图片描述
我们更加关注在代数上的表示:

实际上,我们利用极限来对渐近线来一个形象的表述:

  • 水平渐近线: y = B y=B y=B
    l i m x → ∞ f ( x ) = B lim_{x\rightarrow\infty}f(x)=B limxf(x)=B
  • 垂直渐近线: x = B x=B x=B
    l i m x → B f ( x ) = ∞ lim_{x\rightarrow B}f(x)=\infty limxBf(x)=
  • 斜的渐近线: y = K x + B y=Kx+B y=Kx+B
    l i m x → ∞ f ( x ) x = K lim_{x\rightarrow\infty}\frac{f(x)}{x}=K limxxf(x)=K l i m x → ∞ f ( x ) − K x = B lim_{x\rightarrow\infty}f(x)-Kx=B limxf(x)Kx=B

例题:找出该函数的渐近线:
f ( x ) = x 3 x 2 + 2 x − 3 f(x)=\frac{x^3}{x^2+2x-3} f(x)=x2+2x3x3

解:

先看水平渐近线:
l i m x → ∞ x 3 x 2 + 2 x − 3 = ∞ lim_{x\rightarrow\infty}\frac{x^3}{x^2+2x-3}=\infty limxx2+2x3x3=
所以没有水平渐近线

再看垂直的:
我们找出不合理的点:
比如我们令分母等于0: x 2 + 2 x − 3 = 0 x^2+2x-3=0 x2+2x3=0 x = − 3 x=-3 x=3 x = 1 x=1 x=1

l i m x → − 3 = ∞ lim_{x\rightarrow-3}=\infty limx3=
l i m x → 1 = ∞ lim_{x\rightarrow1}=\infty limx1=

所以有垂直的水平线

再看斜的:
l i m x → f ( x ) x = 1 lim_{x\rightarrow}\frac{f(x)}{x}=1 limxxf(x)=1
l i m x → f ( x ) − x = − 2 lim_{x\rightarrow}f(x)-x=-2 limxf(x)x=2
y = x − 2 y=x-2 y=x2

©️2020 CSDN 皮肤主题: 程序猿惹谁了 设计师:上身试试 返回首页