第三话:定积分与不定积分【考研数学:高等数学】(基础版)

讲义修订日期:2020年9月4日

讲义目录:

不定积分

  • 【1】不定积分的定义
  • 【2】求积分(一二类换元法)
  • 【3】求积分(分部积分法)
  • 【4】求积分(有理函数的积分)

定积分

  • 【1】定积分的定义和性质
  • 【2】积分上限函数
  • 【3】求定积分(牛莱公式、换元法、分部积分法)
  • 【4】定积分的应用:求面积/求体积
  • 【5】广义积分和比较判定定理(判断敛散性)
  • 【6】瑕积分

1. 不定积分

1.1 不定积分的定义

所谓积分就是求导函数的反操作。说白了已知导函数求原函数的过程。

对于一个导函数而言,他的原函数是有无数的。所以,不定积分一定要在原函数的后面加上 常数C
如果从几何上来理解的话:斜率一致的直线有无数的
在这里插入图片描述
之后,我们研究的问题无非就是求积分,因为求积分的难度会比求导数会更难,因此我们需要到很多针对不同题型的特别解决方法。

首先,先看直接就能爆破的:
∫ ( 1 − x ) 2 x x d x = ∫ x 2 − 2 x + 1 x 3 2 d x = ∫ ( x 1 2 − 2 x − 1 2 + x − 3 2 ) d x = 2 3 x 3 2 − 4 x 1 2 − 2 x − 1 2 + C \int\frac{(1-x)^2}{x\sqrt{x}}dx=\int\frac{x^2-2x+1}{x^{\frac{3}{2}}}dx=\int(x^\frac{1}{2}-2x^{-\frac{1}{2}}+x^{-\frac{3}{2}})dx=\frac{2}{3}x^\frac{3}{2}-4x^{\frac{1}{2}}-2x^{-\frac{1}{2}}+C xx (1x)2dx=x23x22x+1dx=(x212x21+x23)dx=32x234x212x21+C

技巧:
对于一个假分式(分母的次数更高的)我们尽量拆开处理

例题:
∫ x 4 1 + x 2 d x \int\frac{x^4}{1+x^2}dx 1+x2x4dx

∫ x 4 − 1 + 1 x 2 + 1 d x = ∫ ( x 2 − 1 ) ( x 2 + 1 ) + 1 x 2 + 1 d x = ∫ x 2 − 1 + 1 x 2 + 1 d x = 1 3 x 3 − x + a r c t a n x + C \int\frac{x^4-1+1}{x^2+1}dx=\int\frac{(x^2-1)(x^2+1)+1}{x^2+1}dx=\int x^2-1+\frac{1}{x^2+1}dx=\frac{1}{3}x^3-x+arctanx+C x2+1x41+1dx=x2+1(x21)(x2+1)+1dx=x21+x2+11dx=31x3x+arctanx+C


1.2 求积分(一二类换元法)

第一类换元法(凑微分法)

我们把 d d d 外面的某项拿到 d d d 里面,然后把 d d d 里面的看成变量。

我们先记住(纠正一个认识):
∫ 1 x d x = l n ∣ x ∣ + C \int\frac{1}{x}dx=ln|x|+C x1dx=lnx+C

这个非常重要,这个绝对值!!记住!!!

看几道题目的操作:
(1)
∫ c o s 3 x d x = 1 3 ∫ c o s 3 x d ( 3 x ) = s i n 3 x + C \int cos3xdx\\=\frac{1}{3}\int cos3xd(3x)=sin3x+C cos3xdx=31cos3xd(3x)=sin3x+C
(2)
∫ 1 3 x + 2 d x = 1 3 ∫ 1 3 x + 2 d ( 3 x + 2 ) = l n ∣ 3 x + 2 ∣ + C \int\frac{1}{3x+2}dx\\=\frac{1}{3}\int\frac{1}{3x+2}d(3x+2)=ln|3x+2|+C 3x+21dx=313x+21d(3x+2)=ln3x+2+C
(3)
∫ x 1 − x 2 d x = − 1 3 ( 1 − x 2 ) 3 2 + C \int x\sqrt{1-x^2}dx\\=-\frac{1}{3}(1-x^2)^\frac{3}{2}+C x1x2 dx=31(1x2)23+C
(4)
∫ x e x 2 d x = 1 2 e x 2 + C \int xe^{x^2}dx\\=\frac{1}{2}e^{x^2}+C xex2dx=21ex2+C
(5)
∫ d x x ( 1 + l n x ) d x = l n ∣ l n x + 1 ∣ = C \int\frac{dx}{x(1+lnx)}dx\\=ln|lnx+1|=C x(1+lnx)dxdx=lnlnx+1=C
(6)
∫ e x 1 − e x d x = − 2 3 ( 1 − e x ) 3 2 + C \int e^x\sqrt{1-e^x}dx\\=-\frac{2}{3}(1-e^x)^\frac{3}{2}+C ex1ex dx=32(1ex)23+C
(7)
∫ t a n 3 x c o s 2 x d x = ∫ t a n 3 x s e c 2 x d x = ∫ t a n 3 x d ( t a n x ) = 1 4 t a n 4 x + C \int\frac{tan^3x}{cos^2x}dx\\=\int tan^3xsec^2xdx=\int tan^3xd(tanx)=\frac{1}{4}tan^4x+C cos2xtan3xdx=tan3xsec2xdx=tan3xd(tanx)=41tan4x+C
(8)需要记住这种形式:
∫ d x a 2 + x 2 d x = 1 a ∫ d ( x a ) 1 + ( x a ) 2 = 1 a a r c t a n x a + C \int\frac{dx}{a^2+x^2}dx\\=\frac{1}{a}\int\frac{d(\frac{x}{a})}{1+(\frac{x}{a})^2}=\frac{1}{a}arctan\frac{x}{a}+C a2+x2dxdx=a11+(ax)2d(ax)=a1arctanax+C
(9)分母下的减法用因式分解,也要记住这个:
∫ 1 x 2 − a 2 d x = ∫ 1 ( x + a ) ( x − a ) d x = 1 2 a ∫ ( 1 x − a − 1 x + a ) d x = 1 2 a l n ∣ x − a x + a ∣ + C \int\frac{1}{x^2-a^2}dx\\=\int\frac{1}{(x+a)(x-a)}dx=\frac{1}{2a}\int(\frac{1}{x-a}-\frac{1}{x+a})dx=\frac{1}{2a}ln|\frac{x-a}{x+a}|+C x2a21dx=(x+a)(xa)1dx=2a1(xa1x+a1)dx=2a1lnx+axa+C
d d d 里面的项可以随意加减常数


第二类换元法

真换元(设一个 t ( x ) t(x) t(x)),第二类的换元法主要解决的是根号下的问题。

我们看一下例题的操作:


(1)根号直接替换法:
∫ d x x x − 3 \int\frac{dx}{x\sqrt{x-3}} xx3 dx
t = 2 x − 3 , x = t 2 + 3 t=\sqrt{2x-3},x=t^2+3 t=2x3 x=t2+3
∫ d ( t 2 + 3 ) ( t 2 + 3 ) t = ∫ 2 t d t ( t 2 + 3 ) t = ∫ 2 d t ( t 2 + 3 ) = 2 3 3 a r c t a n t 3 + C \int \frac{d(t^2+3)}{(t^2+3)t}=\int\frac{2tdt}{(t^2+3)t}=\int\frac{2dt}{(t^2+3)}=\frac{2\sqrt{3}}{3}arctan\frac{t}{\sqrt{3}}+C (t2+3)td(t2+3)=(t2+3)t2tdt=(t2+3)2dt=323 arctan3 t+C


(2)次数统一换法:
∫ d x x + 3 x \int\frac{dx}{\sqrt{x}+^3\sqrt{x}} x +3x dx
t = 6 x , x = t 6 t=^6\sqrt{x},x=t^6 t=6x ,x=t6
∫ 6 t 5 d t t 3 + t 2 = 6 ∫ t 3 d t t + 1 = 6 ∫ t 3 − 1 + 1 t + 1 d t \int \frac{6t^5dt}{t^3+t^2}=6\int\frac{t^3dt}{t+1}=6\int\frac{t^3-1+1}{t+1}dt t3+t26t5dt=6t+1t3dt=6t+1t31+1dt


(3)三角函数替换法:
∫ a 2 − x 2 d x ( a > 0 ) \int\sqrt{a^2-x^2}dx(a>0) a2x2 dx(a>0)
x a = s i n t \frac{x}{a}=sint ax=sint
使用三角函数替换的时候,需要注意的 t的定义域和x的定义域之间的转换!!!!,其实,其他换法也应该注意这个问题

在这里插入图片描述

类似的:
在这里插入图片描述


(4)超高次数的处理:
∫ x 3 ( x − 1 ) 100 d x \int\frac{x^3}{(x-1)^{100}}dx (x1)100x3dx
在这里插入图片描述


1.3 求积分(分部积分法)

大部分的题目都是可以用分部积分法进行解决的,这是一般的解题方法。

分部积分法的公式推导:

首先记住: ∫ A B ′ d x = ∫ A d B \int AB'dx=\int AdB ABdx=AdB ∫ ( A B ) ′ d x = A B \int (AB)'dx=AB (AB)dx=AB
在这里插入图片描述
分部积分法的公式:
∫ U d V = U V − ∫ V d U \int UdV=UV-\int VdU UdV=UVVdU


看例题:
(1)
∫ x a r c t a n x d x \int xarctanxdx xarctanxdx
U = x 2 , V = a r c t a n x U=x^2,V=arctanx U=x2,V=arctanx

在这里插入图片描述

(2)
∫ l n x d x = x l n x − x + C \int lnxdx\\=xlnx-x+C lnxdx=xlnxx+C

问题是谁去和 d x dx dx 合体呢?
按照一般情况的话:越近的先合体
∫ 反 对 幂 指 三 d x \int 反对幂指三dx dx


1.4 求积分(有理函数积分)

所谓有理函数,就是通过 多项式 进行加减乘除得到的函数。

多项式除法

使用多项式除法,是对多项式进行因式分解的一个手段。

x 5 + 2 x 3 − x 2 − 2 x + 1 x 2 + x + 1 \frac{x^5+2x^3-x^2-2x+1}{x^2+x+1} x2+x+1x5+2x3x22x+1

在这里插入图片描述
什么时候用多项式除法呢?当有理函数的形式是假分式的时候,我们利用多项式除法可以造出真的分式。

处理真分式

我们以二次为代表来研究一下:

题型1:
∫ 1 a x 2 + b x + c d x \int\frac{1}{ax^2+bx+c}dx ax2+bx+c1dx

我们分情况看:
【1】 b 2 − 4 a c = 0 b^2-4ac=0 b24ac=0
【2】 b 2 − 4 a c > 0 b^2-4ac>0 b24ac>0
【3】 b 2 − 4 a c < 0 b^2-4ac<0 b24ac<0
在这里插入图片描述


题型2:

∫ e x + f a x 2 + b x + c d x \int\frac{ex+f}{ax^2+bx+c}dx ax2+bx+cex+fdx

我们分情况看:
【1】 b 2 − 4 a c = 0 b^2-4ac=0 b24ac=0
【2】 b 2 − 4 a c > 0 b^2-4ac>0 b24ac>0
【3】 b 2 − 4 a c < 0 b^2-4ac<0 b24ac<0

在这里插入图片描述


如果有更高次数的话怎样处理呢?

∫ x 3 ( x + 1 ) 4 d x \int\frac{x^3}{(x+1)^4}dx (x+1)4x3dx

标准处理方式:
A 1 ( x + 1 ) 4 + A 2 ( x + 1 ) 3 + A 2 ( x + 1 ) 2 + A 1 ( x + 1 ) \frac{A_1}{(x+1)^4}+\frac{A_2}{(x+1)^3}+\frac{A_2}{(x+1)^2}+\frac{A_1}{(x+1)} (x+1)4A1+(x+1)3A2+(x+1)2A2+(x+1)A1
x 3 = A 1 + A 2 ( x + 1 ) + A 3 ( x + 1 ) 2 + A 4 ( x + 1 ) 3 x^3=A_1+A_2(x+1)+A_3(x+1)^2+A_4(x+1)^3 x3=A1+A2(x+1)+A3(x+1)2+A4(x+1)3
然后解方程

但是我们也可以根据换元法进行秒杀:
t = x + 1 t=x+1 t=x+1
原式:
∫ ( t − 1 ) 3 t 4 d t = ∫ t 3 − 3 t 2 + 3 t − 1 t 4 d t \int\frac{(t-1)^3}{t^4}dt=\int\frac{t^3-3t^2+3t-1}{t^4}dt t4(t1)3dt=t4t33t2+3t1dt

然后拆开


对于本节,我们需要掌握的是上面两种二次的题型,对于高次的我们可以用换元法,也可以用公式法。


2. 定积分

2.1 定积分的定义和性质

关于定积分,我们先从曲边梯形的面积开始说起,先体会这个过程:

定积分 ∫ a b f ( x ) d x \int_a^b f(x) dx abf(x)dx描述的是在 [ a , b ] [a,b] [a,b]的面积

∫ a b f ( x ) d x = l i m λ → 0 ∑ i = 1 n f ( δ i ) Δ x i \int_a^bf(x)dx=lim_{\lambda\rightarrow0}\sum^n_{i=1}f(\delta_i)\Delta x_i abf(x)dx=limλ0i=1nf(δi)Δxi
λ = m a x { Δ x 1 . . . Δ x n } \lambda=max\{\Delta x_1...\Delta x_n\} λ=max{Δx1...Δxn}
在这里插入图片描述
我们注意一下定积分的条件:非常的简单,就是 连续,有界,有限个间断点就可积

但是如果说:有间断点也可积就错,因为,必须强调是有限个。

定积分的几何意义: ∑ f ( δ i ) Δ x i \sum f(\delta_i)\Delta x_i f(δi)Δxi
为什么定积分有正负之分:

原因如下:
在这里插入图片描述


定积分的性质

(1) b = a b=a b=a ∫ a a f ( x ) = 0 \int_a^af(x)=0 aaf(x)=0

(2) ∫ a b f ( x ) d x = − ∫ b a f ( x ) d x \int_a^bf(x)dx=-\int_b^af(x)dx abf(x)dx=baf(x)dx

(3) ∫ a b f ( x ) d x = ∫ a c f ( x ) d x + ∫ c b f ( x ) d x \int_a^bf(x)dx=\int_a^cf(x)dx+\int^b_cf(x)dx abf(x)dx=acf(x)dx+cbf(x)dx

对于第三个条件,无论 c c c 是否在 a b ab ab之间都成立。

假如 f ( x ) f(x) f(x)恒等于 C C C,那么 ∫ a b f ( x ) d x = C ( b − a ) \int_a^bf(x)dx=C(b-a) abf(x)dx=C(ba)

同理, f ( x ) f(x) f(x) 恒大于/小于 C C C,那么 ∫ a b f ( x ) d x \int_a^bf(x)dx abf(x)dx C ( b − a ) C(b-a) C(ba) 的关系也同理


定积分的界值定理

我们引出定积分的界值定理:
M M M m m m f ( x ) f(x) f(x)的最大值,最小值,有: m ( b − a ) ≤ ∫ a b f ( x ) d x ≤ M ( b − a ) m(b-a)\leq\int_a^bf(x)dx\leq M(b-a) m(ba)abf(x)dxM(ba)

还有关于绝对值:
∣ ∫ a b f ( x ) d x ∣ ≤ ∫ a b ∣ f ( x ) ∣ d x |\int_a^bf(x)dx|\leq\int_a^b|f(x)|dx abf(x)dxabf(x)dx

定积分的中值定理

f ( x ) f(x) f(x)连续, ∃ δ ∈ [ a , b ] \exists\delta\in[a,b] δ[a,b] ∫ a b f ( x ) d x = f ( δ ) ( b − a ) \int_a^bf(x)dx=f(\delta)(b-a) abf(x)dx=f(δ)(ba)

在这里插入图片描述
结合之前的界值定理:
m ( b − a ) ≤ ∫ a b f ( x ) d x ≤ M ( b − a ) m(b-a)\leq\int_a^bf(x)dx\leq M(b-a) m(ba)abf(x)dxM(ba)
m ≤ 1 b − a ∫ a b f ( x ) d x ≤ M m\leq\frac{1}{b-a}\int_a^bf(x)dx\leq M mba1abf(x)dxM
f ( δ ) = 1 b − a ∫ a b f ( x ) d x f(\delta)=\frac{1}{b-a}\int_a^bf(x)dx f(δ)=ba1abf(x)dx

这个 f ( δ ) f(\delta) f(δ) 就是平均值


2.2 积分上限函数

我们现在假设:上限可以移动,是个变量的时候,如图:

在这里插入图片描述
这个就是积分上限函数,积分下限函数同理,我们随时需要记住,积分上限才是自变量

最重要的是我们需要记住积分上限函数的求导转换,直接代入 x x x即可。

p ( x ) = ∫ a x f ( t ) d t , x ∈ [ a , b ] p(x)=\int_a^xf(t)dt,x\in[a,b] p(x)=axf(t)dtx[a,b]
p ′ ( x ) = f ( x ) p'(x)=f(x) p(x)=f(x)

假如是复合的: ( ∫ a x 2 f ( t ) d t ) ′ = 2 x f ( x 2 ) (\int_a^{x^2}f(t)dt)'=2xf(x^2) (ax2f(t)dt)=2xf(x2)

当成复合函数求导的形式处理即可。

如果是积分下限函数: ( ∫ x b f ( t ) d t ) ′ = − f ( x ) (\int_x^bf(t)dt)'=-f(x) (xbf(t)dt)=f(x)

加负号即可。

总结一种最一般的公式:
记住下面的积分变限函数的求导公式
( ∫ l ( x ) h ( x ) f ( t ) d t ) ′ = f ( h ) h ′ − f ( l ) l ′ (\int_{l(x)}^{h(x)}f(t)dt)'=f(h)h'-f(l)l' (l(x)h(x)f(t)dt)=f(h)hf(l)l


例题:
l i m x → 0 ∫ 0 x a r c t a n t d t x 2 lim_{x\rightarrow0}\frac{\int_0^xarctantdt}{x^2} limx0x20xarctantdt

解:

使用洛必达法则处理:
l i m x → 0 a r c t a n x 2 x = l i m x → 0 1 1 + x 2 2 lim_{x\rightarrow0}\frac{arctanx}{2x}=lim_{x\rightarrow0}\frac{\frac{1}{1+x^2}}{2} limx02xarctanx=limx021+x21


例题:
l i m x → 0 ∫ 0 x [ ∫ 0 u 2 a r c t a n ( 1 + t ) d t ] d u x ( 1 − c o s x ) lim_{x\rightarrow0}\frac{\int_0^x[\int_0^{u^2}arctan(1+t)dt]du}{x(1-cosx)} limx0x(1cosx)0x[0u2arctan(1+t)dt]du

解:

一层层剥离:
∫ 0 x [ 2 u ∗ a r c t a n ( 1 + u 2 ) ] d u \int_0^x[2u*arctan(1+u^2)]du 0x[2uarctan(1+u2)]du
2 x ∗ a r c t a n ( 1 + x 2 ) 2x*arctan(1+x^2) 2xarctan(1+x2)

原式:
l i m x → 0 2 x ∗ a r c t a n ( 1 + x 2 ) ( x ( 1 − c o s x ) ) ′ lim_{x\rightarrow0}\frac{2x*arctan(1+x^2)}{(x(1-cosx))'} limx0(x(1cosx))2xarctan(1+x2)


2.3 求定积分(牛莱公式、换元法、分部积分法)

定积分的牛莱公式

∫ a b f ( x ) d x = F ( x ) ∣ a b = F ( b ) − F ( a ) \int_a^bf(x)dx=F(x)|_a^b=F(b)-F(a) abf(x)dx=F(x)ab=F(b)F(a)


例题:
∫ − 1 3 ∣ 2 − x ∣ d x \int_{-1}^3|2-x|dx 132xdx

解:

∣ 2 − x ∣ = { 2 − x , ( x ≤ 2 ) x − 2 , ( x > 2 ) |2-x|=\begin{cases}2-x,(x\leq2)\\x-2,(x>2)\end{cases} 2x={2x(x2)x2(x>2)

需要考虑分段,这是定积分和不定积分最不一样的地方,定积分是不严谨的,还记得之前说过定积分的前提只有:连续即可,所以我们需要先把间断点找出来。

∫ − 1 2 ( 2 − x ) d x + ∫ 2 3 ( x − 2 ) d x \int_{-1}^2(2-x)dx+\int_2^3(x-2)dx 12(2x)dx+23(x2)dx


定积分的换元法

我们可以想,直接用不定积分的方法求出来再代入不就可以了吗?

不是的,有时候虽然可以这样,换元的时候,上下限也需要换

为了保证上下限能够直接替换,我们需要保证我们的换元的函数是一个单调函数


例题:
∫ 0 8 d x 1 + 3 x \int_0^8\frac{dx}{1+^3\sqrt{x}} 081+3x dx

解:

设: t = 3 x t=^3\sqrt{x} t=3x x = t 3 x=t^3 x=t3,所以: x ∈ [ 0 , 8 ] x\in[0,8] x[0,8] t ∈ [ 0 , 2 ] t\in[0,2] t[0,2]

原式= 3 ∫ 0 2 t 2 − 1 + 1 1 + t 3\int_0^2\frac{t^2-1+1}{1+t} 3021+tt21+1


例题:
∫ 0 a a 2 − x 2 d x , ( a > 0 ) \int_0^a\sqrt{a^2-x^2}dx,(a>0) 0aa2x2 dx(a>0)

这题,我们需要替换: x = a s i n t x=asint x=asint x ∈ [ 0 , a ] x\in[0,a] x[0,a] t ∈ [ 0 , π 2 ] t\in[0,\frac{\pi}{2}] t[0,2π]

当然这题还有其他解法: y 2 + x 2 = a 2 y^2+x^2=a^2 y2+x2=a2,是圆函数

这里是 1 4 π a 2 \frac{1}{4}\pi a^2 41πa2


例题:
证明下面的不等式:n是 Z + Z^+ Z+

∫ 0 π 2 s i n n x d x = ∫ 0 π 2 c o s n x d x \int_{0}^{\frac{\pi}{2}}sin^nxdx=\int_0^{\frac{\pi}{2}}cos^nxdx 02πsinnxdx=02πcosnxdx

证明:

x = π 2 − t x=\frac{\pi}{2}-t x=2πt 即可, x ∈ [ 0 , π 2 ] x\in[0,\frac{\pi}{2}] x[0,2π] t ∈ [ π 2 , 0 ] t\in[\frac{\pi}{2},0] t[2π,0]


例题;
已知: ∫ 0 x t f ( x − t ) d t = 1 − c o s x \int_0^xtf(x-t)dt=1-cosx 0xtf(xt)dt=1cosx ∫ 0 π 2 f ( x ) d x \int_0^{\frac{\pi}{2}}f(x)dx 02πf(x)dx

解:

这个不是积分上限函数哈,先明确
先换元,把括号里面的减号拿出来:
在这里插入图片描述


求定积分的奇偶变换

这个非常重要,因为利用这个 性质可以对一些部分进行抵消。

  • f ( x ) f(x) f(x)是偶函数:
    ∫ − a a f ( x ) d x = 2 ∫ 0 a f ( x ) d x \int_{-a}^af(x)dx=2\int_0^af(x)dx aaf(x)dx=20af(x)dx
  • f ( x ) f(x) f(x)是奇函数:
    ∫ − a a f ( x ) d x = 0 \int_{-a}^{a}f(x)dx=0 aaf(x)dx=0

在这里插入图片描述

有用的是第二点,第一点实际上也没有简化多少


例题:
∫ − 1 1 s i n 3 x + ( a r c t a n x ) 2 1 + x 2 \int_{-1}^{1}\frac{sin^3x+(arctanx)^2}{1+x^2} 111+x2sin3x+(arctanx)2

看这个函数, s i n 3 x sin^3x sin3x奇函数, 1 + x 2 1+x^2 1+x2偶函数, ( a r c t a n x ) 2 (arctanx)^2 (arctanx)2偶函数

我们拆开:
∫ − 1 1 s i n 3 x 1 + x 2 d x + ∫ − 1 1 ( a r c t a n x ) 2 1 + x 2 \int_{-1}^1\frac{sin^3x}{1+x^2}dx+\int_{-1}^1\frac{(arctanx)^2}{1+x^2} 111+x2sin3xdx+111+x2(arctanx)2
前面的部分就消掉了。


定积分的分部积分

∫ a b U d V = U V ∣ a b − ∫ a b V d U \int_a^bUdV=UV|^b_a-\int_a^bVdU abUdV=UVababVdU

合成 d V dV dV 的原则是反对幂指三d,如果有 e x e^x ex就优先。

在这里插入图片描述


例题:
f ( x ) = { e x 2 s i n x , ( x < 1 ) x l n x , ( x > = 1 ) f(x)=\begin{cases}e^{x^2}sinx,(x<1)\\xlnx,(x>=1)\end{cases} f(x)={ex2sinx(x<1)xlnx(x>=1)

∫ 1 4 f ( x − 2 ) d x \int_1^4f(x-2)dx 14f(x2)dx

解:

---


2.4 定积分的应用:求面积/求体积

求面积

一个定积分可以表示一个函数的围成的阴影面积,如果组合起来的话,就能表示很多其他的图形了。

  • 第一类: x x x 型(dx)
    在这里插入图片描述
  • 第二类: y y y 型(dy)

在这里插入图片描述

组合类的我们解题的时候需要先判断这个图是x型的还是y型的,主要是看他垂直于什么轴:
例如:
在这里插入图片描述
如果是有多个的我们可以拆开解决:
在这里插入图片描述


求体积

我们更多的是考求体积:先看一个例子,假如有个土豆,切成很多片,然后假设我们已知截面面积的函数 A ( x i ) A(x_i) A(xi)

体会一下下面的过程:

在这里插入图片描述
所以,我们可以知道,对于不规则的形状,一旦知道了一个方向下的截面面积函数 A ( x ) A(x) A(x),我们就能求出体积了。

V = ∫ a b A ( x ) d x V=\int_a^bA(x)dx V=abA(x)dx

说白了就是对截面函数求定积分。

定积分是一个求上升维度的值的过程。


例题(绕轴旋转的题目):

在这里插入图片描述


2.5 广义积分和比较判定定理(判断敛散性)

广义积分

所谓的广义积分,就是有一个限是是无穷的。
这时候,我们需要变成一个极限问题来解决了:

  • ∫ a + ∞ f ( x ) d x = l i m b → + ∞ ∫ a b f ( x ) d x \int_{a}^{+\infty}f(x)dx=lim_{b\rightarrow+\infty}\int_a^bf(x)dx a+f(x)dx=limb+abf(x)dx
  • ∫ − ∞ b f ( x ) d x = l i m a → − ∞ ∫ a b f ( x ) d x \int_{-\infty}^{b}f(x)dx=lim_{a\rightarrow-\infty}\int_a^bf(x)dx bf(x)dx=limaabf(x)dx
  • ∫ − ∞ + ∞ f ( x ) d x = ∫ − ∞ c f ( x ) d x + ∫ c + ∞ f ( x ) d x \int_{-\infty}^{+\infty}f(x)dx=\int_{-\infty}^{c}f(x)dx+\int_{c}^{+\infty}f(x)dx +f(x)dx=cf(x)dx+c+f(x)dx

针对广义积分,我们用的是广义牛莱公式。

例题:
∫ 0 + ∞ f ( x ) d x = F ( + ∞ ) − F ( 0 ) \int_{0}^{+\infty}f(x)dx=F(+\infty)-F(0) 0+f(x)dx=F(+)F(0)


广义积分与敛散性

对于广义积分而言,无非就两种下场:一种就是可以通过广义牛莱公式求出值,另一种就是发散,求不出来。

  • ∫ − ∞ + ∞ d x 1 + x 2 = a r c t a n x ∣ − ∞ + ∞ = π \int_{-\infty}^{+\infty}\frac{dx}{1+x^2}=arctanx|_{-\infty}^{+\infty}=\pi +1+x2dx=arctanx+=π
  • ∫ 0 + ∞ c o s x d x \int_{0}^{+\infty}cosxdx 0+cosxdx 发散

a r c t a n x arctanx arctanx的图像:
在这里插入图片描述

性质:

假如 ∫ a + ∞ f ( x ) d x \int_a^{+\infty}f(x)dx a+f(x)dx ∫ a + ∞ g ( x ) d x \int_a^{+\infty}g(x)dx a+g(x)dx 都收敛的话,那么可知: ∫ a + ∞ ( f ( x ) ± g ( x ) ) d x \int_a^{+\infty}(f(x)\pm g(x))dx a+(f(x)±g(x))dx 收敛

反推则不成立。

广义积分下的比较判别定理

已知: 0 ≤ f ( x ) ≤ g ( x ) 0\leq f(x) \leq g(x) 0f(x)g(x)

  • ∫ a + ∞ g ( x ) d x \int_a^{+\infty}g(x)dx a+g(x)dx 收敛,则 ∫ 0 + ∞ f ( x ) d x \int_{0}^{+\infty}f(x)dx 0+f(x)dx 一定收敛

  • ∫ a + ∞ f ( x ) d x \int_a^{+\infty}f(x)dx a+f(x)dx 发散,则 ∫ 0 + ∞ g ( x ) d x \int_{0}^{+\infty}g(x)dx 0+g(x)dx 一定发散

比瘦子还瘦的一定是瘦子

为啥有大于等于0 的前提呢?

为了防止 f ( x ) → − ∞ f(x)\rightarrow -\infty f(x),这样就是发散的了


例题:
判断: ∫ 0 + ∞ e − x 2 d x \int_0^{+\infty} e^{-x^{2}}dx 0+ex2dx 敛散性

解:

这是个广义积分,就两种情况,积分求的出来就不发散,但求积分看求不求的出来这个是非常困难的。

首先根据常识:
x > = 1 x>=1 x>=1的时候,才满足: x 2 > x x^2>x x2>x
才有:
0 ≤ e − x 2 ≤ e − x 0\leq e^{-x^2}\leq e^{-x} 0ex2ex

原式:
∫ 0 + ∞ e − x 2 d x = ∫ 0 1 e − x 2 d x + ∫ 1 + ∞ e − x 2 d x \int_0^{+\infty}e^{-x^2}dx=\int_0^1e^{-x^2}dx+\int_1^{+\infty}e^{-x^2}dx 0+ex2dx=01ex2dx+1+ex2dx

已知 ∫ 1 + ∞ e − x d x \int_1^{+\infty}e^{-x}dx 1+exdx,可求出积分,所以收敛

所以原式也收敛


广义积分的绝对收敛和条件收敛
  • ∫ a + ∞ f ( x ) d x \int_a^{+\infty}f(x)dx a+f(x)dx收敛, ∫ a + ∞ ∣ f ( x ) ∣ d x \int_a^{+\infty}|f(x)|dx a+f(x)dx收敛,则称 ∫ a + ∞ f ( x ) d x \int_a^{+\infty}f(x)dx a+f(x)dx绝对收敛
  • ∫ a + ∞ f ( x ) d x \int_a^{+\infty}f(x)dx a+f(x)dx收敛, ∫ a + ∞ ∣ f ( x ) ∣ d x \int_a^{+\infty}|f(x)|dx a+f(x)dx发散,则称 ∫ a + ∞ f ( x ) d x \int_a^{+\infty}f(x)dx a+f(x)dx条件收敛

对于绝对值的来说,如果全部翻上去的面积都收敛了(就是可以计算)的话,那么,正负抵消的时候也一定收敛
在这里插入图片描述


2.6 瑕积分

所谓瑕积分,就是假的积分,因为他存在瑕疵,再上限或者下限的地方函数没有定义。
表达出来有三种。

  • 第一种:
    在这里插入图片描述
    ∫ a b f ( x ) d x = l i m δ + → 0 ∫ a b − δ + f ( x ) d x \int_a^bf(x)dx=lim_{\delta^+\rightarrow0}\int_a^{b-\delta^+}f(x)dx abf(x)dx=limδ+0abδ+f(x)dx

  • 第二种:

在这里插入图片描述
∫ a b f ( x ) d x = l i m δ + → 0 ∫ a + δ + b f ( x ) d x \int_a^bf(x)dx=lim_{\delta^+\rightarrow 0}\int_{a+\delta^+}^bf(x)dx abf(x)dx=limδ+0a+δ+bf(x)dx

  • 第三种:
    在这里插入图片描述
    ∫ a b f ( x ) d x = ∫ a c f ( x ) d x + ∫ c b f ( x ) d x \int_a^bf(x)dx=\int_a^cf(x)dx+\int_c^bf(x)dx abf(x)dx=acf(x)dx+cbf(x)dx

然后用上面的两种处理即可。


例题:求: ∫ 0 1 l n x d x \int_0^1lnxdx 01lnxdx

解:
在这里插入图片描述

l i m δ + → 0 ∫ 0 + δ + 1 l n x d x = l i m δ + → 0 [ − 1 − δ l n δ + δ ] lim_{\delta^+\rightarrow 0}\int_{0+\delta^+}^1lnxdx=lim_{\delta^+\rightarrow 0}[-1-\delta ln\delta+\delta] limδ+00+δ+1lnxdx=limδ+0[1δlnδ+δ]

记住: l n x lnx lnx的原函数: x l n x − x xlnx-x xlnxx

©️2020 CSDN 皮肤主题: 程序猿惹谁了 设计师:上身试试 返回首页