前面,已经有一篇文章讲解了spark的checkpoint:
必会:关于SparkStreaming checkpoint那些事儿
同时,浪尖也在知识星球里发了源码解析的文章。spark streaming的Checkpoint仅仅是针对driver的故障恢复做了数据和元数据的Checkpoint。而本文要讲的flink的checkpoint机制要复杂了很多,它采用的是轻量级的分布式快照,实现了每个操作符的快照,及循环流的在循环的数据的快照。详细的算法后面浪尖会给出文章。
欢迎点击阅读原文,加入浪尖知识星球,更深入学习spark等大数据知识。
1. 简介
Apache Flink提供容错机制,以持续恢复数据流应用程序的状态。该机制确保即使存在故障,程序的每条记录只会作用于状态一次(exactly-once),当然也可以降级为至少一次(at-least-once)。
容错机制持续地制作分布式流数据流的快照。对于状态较小的流应用程序,这些快照非常轻量级,可以频繁产生快照,而不会对性能产生太大影响。流应用程序的状态存储的位置是可以配置的(例如存储在master节点或HDFS)。

最低0.47元/天 解锁文章
4万+

被折叠的 条评论
为什么被折叠?



