robberM
码龄12年
关注
提问 私信
  • 博客:191,758
    社区:1,028
    192,786
    总访问量
  • 12
    原创
  • 1,308,844
    排名
  • 41
    粉丝
  • 0
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:广东省
  • 加入CSDN时间: 2012-08-28
博客简介:

robberM的专栏

查看详细资料
个人成就
  • 获得33次点赞
  • 内容获得11次评论
  • 获得140次收藏
  • 代码片获得168次分享
创作历程
  • 7篇
    2020年
  • 2篇
    2019年
  • 1篇
    2018年
  • 1篇
    2016年
  • 1篇
    2014年
  • 37篇
    2013年
  • 5篇
    2012年
成就勋章
TA的专栏
  • 英语
    1篇
  • openCV
    16篇
  • 图形图像
    15篇
  • MFC
    7篇
  • C/C++
    19篇
  • 嵌入式Linux
    3篇
  • 数据结构与算法
    4篇
  • 计算机视觉
    11篇
  • python
    5篇
  • 深度学习
    2篇
创作活动更多

如何做好一份技术文档?

无论你是技术大神还是初涉此领域的新手,都欢迎分享你的宝贵经验、独到见解与创新方法,为技术传播之路点亮明灯!

182人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

2020-12-21

首先创建一个字典 12345 import randomimport timed = {str(x): random.randint(60, 100) for x in range(1, 21)}print(d) 执行结果为: 1 {'16': 61, '3': 66, '17': 70, '10': 82, '1': 71, '18': 89, '5': 83, '4': 97, '19': 77,
原创
发布博客 2020.12.21 ·
265 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

让你的机器学习模型更优秀!

准确预测Fitbit的睡眠得分在本文的前两部分中,我获取了Fitbit的睡眠数据并对其进行预处理,将这些数据分为训练集、验证集和测试集,除此之外,我还训练了三种不同的机器学习模型并比较了它们的性能。在第2部分中,我们看到使用随机森林和xgboost默认超参数,并在验证集上评估模型性能会导致多元线性回归表现最佳,而随机森林和xgboost回归的表现稍差一些。在本文的这一部分中,我将讨论只使用一个验证集的缺点。除此之外,我们还会谈到如何解决这些缺点以及如何调优模型超参数以提高性能。就让我们一探究竟吧
原创
发布博客 2020.11.03 ·
395 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

单词学习2020

1. mindset: 心态;观念模式,思维倾向(1)This oldmindsethas not changed这个旧的思想意识还未转变(2)Enhancing leadership commitment and proactive mindset.增强领导力承诺和积极进取的心态(3)He faces all challenges by aggressivemindset他以积极的心态面对所有的挑战(4)Internationalmindsetcoupled wit...
原创
发布博客 2020.07.01 ·
312 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Python 的一些tricks

1. numpy 拼接def get_features(path): features = [] files = sh.find(path, '-type', 'f', '-name', '*.npy') files = [f.strip() for f in files] features = np.concatenate([np.load(f) for f in files], axis=0) return features
原创
发布博客 2020.05.26 ·
522 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

python matplotlib 画图

首先,看看都有哪些画图的样式:import matplotlib.pyplot as pltprint(plt.style.available)输出所有样式如下:['seaborn-notebook', 'seaborn-muted', 'seaborn-dark', 'tableau-colorblind10', 'seaborn-colorblind', 'seaborn-d...
原创
发布博客 2020.04.22 ·
449 阅读 ·
0 点赞 ·
0 评论 ·
3 收藏

python处理fft

import numpy as np from scipy.fftpack import fft, fftshift, ifftfrom scipy.fftpack import fftfreqimport numpy as npimport matplotlib.pyplot as plt%matplotlib inlineimport osdef read_txt(f): ...
原创
发布博客 2020.03.02 ·
697 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

进程间通信

https://www.jianshu.com/p/c1015f5ffa74
转载
发布博客 2020.01.16 ·
259 阅读 ·
0 点赞 ·
1 评论 ·
0 收藏

python文本txt处理

读操作总结写在前面,三个方法:read() + splitlines()readlines() + strip()readline() + 循环假设有test.txt文件内容为:banana,apple,orangecat, dog, pigfather, mother, childman, woman, human三种写法:1. read()方法with open(...
原创
发布博客 2019.12.26 ·
2678 阅读 ·
5 点赞 ·
1 评论 ·
34 收藏

python文件属性判断(是否存在,是否为空)

1. 判断文件是否为空os.path.getsize()返回文件的字节数,如果为0,则代表空。import osfile = "/home/abc/a.txt"if not os.path.getsize(file): os.remove(file)2. 判断文件/文件夹是否存在os.path.exists()方法用于检验文件/文件夹是否存在。import o...
原创
发布博客 2019.08.25 ·
13816 阅读 ·
1 点赞 ·
1 评论 ·
20 收藏

用PyTorch搞定GluonCV预训练模型

用PyTorch搞定GluonCV预训练模型 今年上半年,DMLC 团队发布了简单易用的计算机视觉工具箱 GluonCV,它继承了 MXNet 动态图接口 Gluon 的优良传统,并能使用简单易用的 API 快速构建复杂的深度神经网络。这一工具非常好用,因此很多研究者希望在 PyTorch 等其它框架上调用它。Amazon AI 的应用科学家张航博士将 GluonCV 转换为了 PyTor...
转载
发布博客 2018.12.13 ·
1793 阅读 ·
0 点赞 ·
1 评论 ·
4 收藏

链表反转——迭代模型与递归模型

版权声明:本文为博主原创作品,转载请在正文明显处注明出处。数据结构:相互之间存在一种或多种特定关系的元素的集合。单链表反转有迭代和递归两种算法。首先,定义结点:struct ListNode{ int val; ListNode* next; ListNode(int v):val(v),next(nullptr){}};单链表的特点由结点组成;每一个结点由数据域和
原创
发布博客 2016.09.08 ·
812 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

leetcode.pdf

发布资源 2016.08.31 ·
pdf

算法技术手册

发布资源 2016.08.31 ·
pdf

caffe的用法总结

发布资源 2015.09.25 ·
pdf

python 读写txt文件 json文件

首先第一步,打开文件,有两个函数可供选择:open() 和  file()    ①. f = open('file.txt',‘w’)                  ...    file.close()               ②. f = file('file.json','r')...          file.close()
原创
发布博客 2014.02.14 ·
13104 阅读 ·
3 点赞 ·
0 评论 ·
3 收藏

windows下boost,pthread,clapack,jpeg,gsl的配置

1.boostBoost是一个开源、可移植的强大的C++程序库,由C++标准委员会库工作组成员发起。官方网址为http://www.boost.org,SourceForge网址为http://sourceforge.net/projects/boost/。本文以Windows下Visual Studio为例讲解如何编译和配置Boost库。首先从SourceForge上下载Bo
原创
发布博客 2013.10.21 ·
1788 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

boost,pthread,clapack,jpeg,gsl在windows下配置方法

1.boostBoost是一个开源、可移植的强大的C++程序库,由C++标准委员会库工作组成员发起。官方网址为http://www.boost.org,SourceForge网址为http://sourceforge.net/projects/boost/。本文以Windows下Visual Studio为例讲解如何编译和配置Boost库。首先从SourceForge上下载Bo
原创
发布博客 2013.10.21 ·
1396 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

CvvImage.cpp

由于OpenCV2.2里面,把原来的CvvImage整个类给删除掉了,因此在MFC下使用带来诸多不方便,大家可以通过提前opencv2.1中的代码的方法来解决(弄一个h文件和一个cpp文件,然后放到你的项目里面一起编译就可以了)。但是在s2010中会出现error C2039: “DrawToHDC”: 不是“ATL::CImage”的成员的错误。这主要是因为命名冲突引起的
转载
发布博客 2013.07.06 ·
4311 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

光流OpticalFlow介绍与OpenCV实现

光流(optic flow)是什么呢?名字很专业,感觉很陌生,但本质上,我们是最熟悉不过的了。因为这种视觉现象我们每天都在经历。从本质上说,光流就是你在这个运动着的世界里感觉到的明显的视觉运动(呵呵,相对论,没有绝对的静止,也没有绝对的运动)。例如,当你坐在火车上,然后往窗外看。你可以看到树、地面、建筑等等,他们都在往后退。这个运动就是光流。而且,我们都会发现,他们的运动速度居然不一样?这就给我们
转载
发布博客 2013.06.06 ·
2210 阅读 ·
0 点赞 ·
0 评论 ·
3 收藏

Spectral Embedding/Clustering

广义上来说,任何在算法中用到SVD/特征值分解的,都叫Spectral Algorithm。从很老很老的PCA/LDA,到比较近的Spectral Embedding/Clustering,都属于这类。三. 为什么要用SVD/特征值分解其实并不是为用而用,而是不得不用。目前在研究领域碰到的很多基础问题都是NP-hard的,找一个比较好的近似算法要费很大的精力;就算找到多项式的近似方法,
转载
发布博客 2013.06.05 ·
8184 阅读 ·
4 点赞 ·
3 评论 ·
14 收藏
加载更多