2020-12-21 首先创建一个字典 12345 import randomimport timed = {str(x): random.randint(60, 100) for x in range(1, 21)}print(d) 执行结果为: 1 {'16': 61, '3': 66, '17': 70, '10': 82, '1': 71, '18': 89, '5': 83, '4': 97, '19': 77,
让你的机器学习模型更优秀! 准确预测Fitbit的睡眠得分在本文的前两部分中,我获取了Fitbit的睡眠数据并对其进行预处理,将这些数据分为训练集、验证集和测试集,除此之外,我还训练了三种不同的机器学习模型并比较了它们的性能。在第2部分中,我们看到使用随机森林和xgboost默认超参数,并在验证集上评估模型性能会导致多元线性回归表现最佳,而随机森林和xgboost回归的表现稍差一些。在本文的这一部分中,我将讨论只使用一个验证集的缺点。除此之外,我们还会谈到如何解决这些缺点以及如何调优模型超参数以提高性能。就让我们一探究竟吧
单词学习2020 1. mindset: 心态;观念模式,思维倾向(1)This oldmindsethas not changed这个旧的思想意识还未转变(2)Enhancing leadership commitment and proactive mindset.增强领导力承诺和积极进取的心态(3)He faces all challenges by aggressivemindset他以积极的心态面对所有的挑战(4)Internationalmindsetcoupled wit...
Python 的一些tricks 1. numpy 拼接def get_features(path): features = [] files = sh.find(path, '-type', 'f', '-name', '*.npy') files = [f.strip() for f in files] features = np.concatenate([np.load(f) for f in files], axis=0) return features
python matplotlib 画图 首先,看看都有哪些画图的样式:import matplotlib.pyplot as pltprint(plt.style.available)输出所有样式如下:['seaborn-notebook', 'seaborn-muted', 'seaborn-dark', 'tableau-colorblind10', 'seaborn-colorblind', 'seaborn-d...
python处理fft import numpy as np from scipy.fftpack import fft, fftshift, ifftfrom scipy.fftpack import fftfreqimport numpy as npimport matplotlib.pyplot as plt%matplotlib inlineimport osdef read_txt(f): ...
python文本txt处理 读操作总结写在前面,三个方法:read() + splitlines()readlines() + strip()readline() + 循环假设有test.txt文件内容为:banana,apple,orangecat, dog, pigfather, mother, childman, woman, human三种写法:1. read()方法with open(...
python文件属性判断(是否存在,是否为空) 1. 判断文件是否为空os.path.getsize()返回文件的字节数,如果为0,则代表空。import osfile = "/home/abc/a.txt"if not os.path.getsize(file): os.remove(file)2. 判断文件/文件夹是否存在os.path.exists()方法用于检验文件/文件夹是否存在。import o...
用PyTorch搞定GluonCV预训练模型 用PyTorch搞定GluonCV预训练模型 今年上半年,DMLC 团队发布了简单易用的计算机视觉工具箱 GluonCV,它继承了 MXNet 动态图接口 Gluon 的优良传统,并能使用简单易用的 API 快速构建复杂的深度神经网络。这一工具非常好用,因此很多研究者希望在 PyTorch 等其它框架上调用它。Amazon AI 的应用科学家张航博士将 GluonCV 转换为了 PyTor...
链表反转——迭代模型与递归模型 版权声明:本文为博主原创作品,转载请在正文明显处注明出处。数据结构:相互之间存在一种或多种特定关系的元素的集合。单链表反转有迭代和递归两种算法。首先,定义结点:struct ListNode{ int val; ListNode* next; ListNode(int v):val(v),next(nullptr){}};单链表的特点由结点组成;每一个结点由数据域和
python 读写txt文件 json文件 首先第一步,打开文件,有两个函数可供选择:open() 和 file() ①. f = open('file.txt',‘w’) ... file.close() ②. f = file('file.json','r')... file.close()
windows下boost,pthread,clapack,jpeg,gsl的配置 1.boostBoost是一个开源、可移植的强大的C++程序库,由C++标准委员会库工作组成员发起。官方网址为http://www.boost.org,SourceForge网址为http://sourceforge.net/projects/boost/。本文以Windows下Visual Studio为例讲解如何编译和配置Boost库。首先从SourceForge上下载Bo
boost,pthread,clapack,jpeg,gsl在windows下配置方法 1.boostBoost是一个开源、可移植的强大的C++程序库,由C++标准委员会库工作组成员发起。官方网址为http://www.boost.org,SourceForge网址为http://sourceforge.net/projects/boost/。本文以Windows下Visual Studio为例讲解如何编译和配置Boost库。首先从SourceForge上下载Bo
CvvImage.cpp 由于OpenCV2.2里面,把原来的CvvImage整个类给删除掉了,因此在MFC下使用带来诸多不方便,大家可以通过提前opencv2.1中的代码的方法来解决(弄一个h文件和一个cpp文件,然后放到你的项目里面一起编译就可以了)。但是在s2010中会出现error C2039: “DrawToHDC”: 不是“ATL::CImage”的成员的错误。这主要是因为命名冲突引起的
光流OpticalFlow介绍与OpenCV实现 光流(optic flow)是什么呢?名字很专业,感觉很陌生,但本质上,我们是最熟悉不过的了。因为这种视觉现象我们每天都在经历。从本质上说,光流就是你在这个运动着的世界里感觉到的明显的视觉运动(呵呵,相对论,没有绝对的静止,也没有绝对的运动)。例如,当你坐在火车上,然后往窗外看。你可以看到树、地面、建筑等等,他们都在往后退。这个运动就是光流。而且,我们都会发现,他们的运动速度居然不一样?这就给我们
Spectral Embedding/Clustering 广义上来说,任何在算法中用到SVD/特征值分解的,都叫Spectral Algorithm。从很老很老的PCA/LDA,到比较近的Spectral Embedding/Clustering,都属于这类。三. 为什么要用SVD/特征值分解其实并不是为用而用,而是不得不用。目前在研究领域碰到的很多基础问题都是NP-hard的,找一个比较好的近似算法要费很大的精力;就算找到多项式的近似方法,