Python中使用Threads和Queue给tornado添加客户端

在tornado web服务器中,为了解决反向POST请求影响性能的问题,本文介绍了如何利用Python的Threads和Queue创建客户端。通过在Handler中将请求数据放入Queue,由独立的线程读取并使用AsyncHTTPClient发送,以实现并发处理,提高服务效率。
摘要由CSDN通过智能技术生成

Python中使用Threads和Queue给tornado添加客户端


1 Python中使用Threads和Queue给tornado添加客户端

在使用tornado实现web服务器时,遇到需要使用客户端反向发送POST请求。在Handler中直接使用tornado客户端发送请求,服务端性能会受到影响,如果使用异步客户端(AsyncHTTPClient)会有所提高,异步客户端是短连接的,同样不符合需求。于是想到了使用多线程,比较好的解决方式是在Handler中把请求数据放到共享数据段,客户端的发送线程读取共享数据并发送。查了multiprocessing和threading,发现直接使用threading.Thread和Queue最简单。

from threading import Thread
from Queue import Queue

if __name__ == "__main__":
    q = Queue()

    def client_handler(q, i):
        client = httpclient.HTTPClient()
        print("client%d handler started "%(i))
        while True:
    
Python,`queue`模块用于创建队列,它不是专门设计用来处理多线程索引访问的,因为它的设计更倾向于先进先出(FIFO)的工作模式。如果你需要从队列获取特定索引的数据,这通常不适合队列的使用场景,因为它并不保证数据的顺序。 然而,如果你确实需要类似功能,并希望在多线程环境下控制数据的访问,可以考虑使用`multiprocessing.Queue`,它是专门为进程间通信设计的,而不是严格的线程安全。在这种情况下,你需要自己管理一个索引列表来追踪数据的位置,每个线程分别操作对应的索引。 例如: ```python import multiprocessing # 创建一个共享的索引列表和队列 index_list = [0] data_queue = multiprocessing.Queue() def worker(index): while True: if index >= len(index_list): break # 获取并处理数据,这里假设数据是整数 data = data_queue.get() process_data(data, index_list[index]) index_list[index] += 1 # 主线程添加数据到队列,并更新索引 for i in range(10): data_queue.put(i) index_list.append(i) # 启动多个工作线程 threads = [multiprocessing.Process(target=worker, args=(i,)) for i in range(len(index_list))] for thread in threads: thread.start() for thread in threads: thread.join() ``` 在这个例子,每个工作线程会按照它们启动时给定的索引访问队列。但是这种方式并没有直接提供按索引取数据的功能,而且可能会有竞态条件,所以实际应用时需要额外的锁或其他同步机制来保证数据的安全。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值