用c语言实现一个alexnet

在C语言中实现一个完整的AlexNet神经网络是一个复杂的任务,涉及大量的矩阵运算和卷积操作。这个示例代码将涵盖AlexNet的主要组件,包括卷积层、ReLU激活函数、池化层和全连接层。

由于C语言本身没有像Python的NumPy那样的矩阵库,我们需要自己编写矩阵运算函数。另外,C语言不支持自动微分,因此我们不会实现反向传播和训练部分,只实现前向传播。

代码结构
1.定义数据结构
2.实现矩阵运算函数
3.实现卷积层
4.实现ReLU激活函数
5.实现池化层
6.实现全连接层
7.实现前向传播
示例代码

#include <stdio.h>
#include <stdlib.h>
#include <math.h>

#define INPUT_SIZE 224
#define CONV1_FILTERS 96
#define CONV2_FILTERS 256
#define CONV3_FILTERS 384
#define CONV4_FILTERS 384
#define CONV5_FILTERS 256
#define FC1_SIZE 4096
#define FC2_SIZE 4096
#define OUTPUT_SIZE 1000

// 卷积层
typedef struct {
    int num_filters;
    int filter_size;
    double ****filters; // 4D array for filters (num_filters x depth x height x width)
} ConvLayer;

// 全连接层
typedef struct {
    int input_size;
    int output_size;
    double **weights; // 2D array for weights (output_size x input_size)
    double *biases; // 1D array for biases (output_size)
} FCLayer;

// 初始化卷积层
ConvLayer* init_conv_layer(int num_filters, int depth, int filter_size) {
    ConvLayer *layer = malloc(sizeof(ConvLayer));
    layer->num_filters = num_filters;
    layer->filter_size = filter_size;
    layer->filters = malloc(num_filters * sizeof(double***));
    for (int i = 0; i < num_filters; i++) {
        layer->filters[i] = malloc(depth * sizeof(double**));
        for (int j = 0; j < depth; j++) {
            layer->filters[i][j] = malloc(filter_size * sizeof(double*));
            for (int k = 0; k < filter_size; k++) {
                layer->filters[i][j][k] = malloc(filter_size * sizeof(double));
                for (int l = 0; l < filter_size; l++) {
                    layer->filters[i][j][k][l] = (double)rand() / RAND_MAX; // Initialize with random weights
                }
            }
        }
    }
    return layer;
}

// 初始化全连接层
FCLayer* init_fc_layer(int input_size, int output_size) {
    FCLayer *layer = malloc(sizeof(FCLayer));
    layer->input_size = input_size;
    layer->output_size = output_size;
    layer->weights = malloc(output_size * sizeof(double*));
    for (int i = 0; i < output_size; i++) {
        layer->weights[i] = malloc(input_size * sizeof(double));
        for (int j = 0; j < input_size; j++) {
            layer->weights[i][j] = (double)rand() / RAND_MAX; // Initialize with random weights
        }
    }
    layer->biases = malloc(output_size * sizeof(double));
    for (int i = 0; i < output_size; i++) {
        layer->biases[i] = (double)rand() / RAND_MAX; // Initialize with random biases
    }
    return layer;
}

// ReLU 激活函数
double relu(double x) {
    return x > 0 ? x : 0;
}

// 卷积操作
void conv_forward(ConvLayer *layer, double ***input, int input_depth, int input_size, double ***output) {
    int output_size = input_size - layer->filter_size + 1;
    for (int f = 0; f < layer->num_filters; f++) {
        for (int i = 0; i < output_size; i++) {
            for (int j = 0; j < output_size; j++) {
                double sum = 0.0;
                for (int d = 0; d < input_depth; d++) {
                    for (int x = 0; x < layer->filter_size; x++) {
                        for (int y = 0; y < layer->filter_size; y++) {
                            sum += input[d][i + x][j + y] * layer->filters[f][d][x][y];
                        }
                    }
                }
                output[f][i][j] = relu(sum);
            }
        }
    }
}

// 最大池化操作
void max_pooling(double ***input, int input_depth, int input_size, int pool_size, int stride, double ***output) {
    int output_size = (input_size - pool_size) / stride + 1;
    for (int d = 0; d < input_depth; d++) {
        for (int i = 0; i < output_size; i++) {
            for (int j = 0; j < output_size; j++) {
                double max_val = -INFINITY;
                for (int x = 0; x < pool_size; x++) {
                    for (int y = 0; y < pool_size; y++) {
                        double val = input[d][i * stride + x][j * stride + y];
                        if (val > max_val) {
                            max_val = val;
                        }
                    }
                }
                output[d][i][j] = max_val;
            }
        }
    }
}

// 全连接层前向传播
void fc_forward(FCLayer *layer, double *input, double *output) {
    for (int i = 0; i < layer->output_size; i++) {
        double sum = 0.0;
        for (int j = 0; j < layer->input_size; j++) {
            sum += input[j] * layer->weights[i][j];
        }
        output[i] = relu(sum + layer->biases[i]);
    }
}

// 主函数:示例前向传播
int main() {
    // 示例输入图像
    int input_depth = 3;
    double ***input = malloc(input_depth * sizeof(double**));
    for (int i = 0; i < input_depth; i++) {
        input[i] = malloc(INPUT_SIZE * sizeof(double*));
        for (int j = 0; j < INPUT_SIZE; j++) {
            input[i][j] = malloc(INPUT_SIZE * sizeof(double));
            for (int k = 0; k < INPUT_SIZE; k++) {
                input[i][j][k] = (double)rand() / RAND_MAX; // Initialize with random values
            }
        }
    }

    // 初始化卷积层和全连接层
    ConvLayer *conv1 = init_conv_layer(CONV1_FILTERS, input_depth, 11);
    ConvLayer *conv2 = init_conv_layer(CONV2_FILTERS, CONV1_FILTERS, 5);
    ConvLayer *conv3 = init_conv_layer(CONV3_FILTERS, CONV2_FILTERS, 3);
    ConvLayer *conv4 = init_conv_layer(CONV4_FILTERS, CONV3_FILTERS, 3);
    ConvLayer *conv5 = init_conv_layer(CONV5_FILTERS, CONV4_FILTERS, 3);
    FCLayer *fc1 = init_fc_layer(6 * 6 * CONV5_FILTERS, FC1_SIZE);
    FCLayer *fc2 = init_fc_layer(FC1_SIZE, FC2_SIZE);
    FCLayer *fc3 = init_fc_layer(FC2_SIZE, OUTPUT_SIZE);

    // 卷积和池化操作
    int conv1_output_size = (INPUT_SIZE - 11 + 1);
    double ***conv1_output = malloc(CONV1_FILTERS * sizeof(double**));
    for (int i = 0; i < CONV1_FILTERS; i++) {
        conv1_output[i] = malloc(conv1_output_size * sizeof(double*));
        for (int j = 0; j < conv1_output_size; j++) {
            conv1_output[i][j] = malloc(conv1_output_size * sizeof(double));
        }
    }
    conv_forward(conv1, input, input_depth, INPUT_SIZE, conv1_output);

    // 最大池化操作
    int pool1_output_size = conv1_output_size / 2;
    double ***pool1_output = malloc(CONV1_FILTERS * sizeof(double**));
    for (int i = 0; i < CONV1_FILTERS; i++) {
        pool1_output[i] = malloc(pool1_output_size * sizeof(double*));
        for (int j = 0; j < pool1_output_size; j++) {
            pool1_output[i][j] = malloc(pool1_output_size * sizeof(double));
        }
    }
    max_pooling(conv1_output, CONV1_FILTERS, conv1_output_size, 2, 2, pool1_output);

    // 全连接层前向传播
    double *fc_input = malloc(6 * 6 * CONV5_FILTERS * sizeof(double));
    double *fc1_output = malloc(FC1_SIZE * sizeof(double));
    double *fc2_output = malloc(FC2_SIZE * sizeof(double));
    double *fc3_output = malloc(OUTPUT_SIZE * sizeof(double));

    // 将池化层的输出展平为一维数组
    for (int i = 0; i < CONV5_FILTERS; i++) {
        for (int j = 0; j < 6; j++) {
            for (int k = 0; k < 6; k++) {
                fc_input[i * 36 + j * 6 + k] = pool1_output[i][j][k];
            }
        }
    }

    // 前向传播通过全连接层
    fc_forward(fc1, fc_input, fc1_output);
    fc_forward(fc2, fc1_output, fc2_output);
    fc_forward(fc3, fc2_output, fc3_output);

    // 打印最终输出
    for (int i = 0; i < OUTPUT_SIZE; i++) {
        printf("%f ", fc3_output[i]);
    }
    printf("\n");

    // 释放内存(此处省略详细的内存释放代码)

    return 0;
}

说明
数据结构:
ConvLayer 和 FCLayer 结构体分别表示卷积层和全连接层。

初始化函数:
init_conv_layer 和 init_fc_layer 用于初始化卷积层和全连接层的权重和偏置。

激活函数:
ReLU 激活函数用于非线性变换。

前向传播:
conv_forward 函数实现卷积操作。
max_pooling 函数实现最大池化操作。
fc_forward 函数实现全连接层的前向传播。

主函数:
创建输入数据并初始化网络层。
进行前向传播并打印最终输出。

注意
这个示例代码实现了AlexNet的一部分结构,但并不完整。
实际应用中,卷积神经网络通常会使用专门的深度学习框架(如TensorFlow、PyTorch)来实现和训练。由于C语言的低级操作和内存管理,编写和调试这样的代码需要非常小心,确保内存正确分配和释放。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值