魔法照片
题目描述
一共有 nnn 个人(以 1∼n1\sim n1∼n 编号)向佳佳要照片,而佳佳只能把照片给其中的 kkk 个人。佳佳按照与他们的关系好坏的程度给每个人赋予了一个初始权值 WiW_iWi。然后将初始权值从大到小进行排序,每人就有了一个序号 DiD_iDi(取值同样是 1∼n1\sim n1∼n)。按照这个序号对 101010 取模的值将这些人分为 101010 类。也就是说定义每个人的类别序号 CiC_iCi 的值为 (Di−1) mod 10+1(D_i-1)\bmod 10 +1(Di−1)mod10+1,显然类别序号的取值为 1∼101 \sim 101∼10。第 iii 类的人将会额外得到 EiE_iEi 的权值。你需要做的就是求出加上额外权值以后,最终的权值最大的 kkk 个人,并输出他们的编号。在排序中,如果两人的 EiE_iEi 相同,编号小的优先。
输入格式
第一行输入用空格隔开的两个整数,分别是 nnn 和 kkk。
第二行给出了 101010 个正整数,分别是 E1∼E10E_1\sim E_{10}E1∼E10。
第三行给出了 nnn 个正整数,第 iii 个数表示编号为 iii 的人的权值 WiW_iWi。
输出格式
只需输出一行用空格隔开的 kkk 个整数,分别表示最终的 WiW_iWi 从高到低的人的编号。
样例 #1
样例输入 #1
10 10
1 2 3 4 5 6 7 8 9 10
2 4 6 8 10 12 14 16 18 20
样例输出 #1
10 9 8 7 6 5 4 3 2 1
提示
对于 100%100\%100% 的数据,1≤n≤200001\leq n\leq 200001≤n≤20000,1≤k≤n1\leq k\leq n1≤k≤n,保证所有数据均在 int 范围之内。
C++实现
#include
#include
using namespace std;
int e[12],n,k;
struct person{
int w;
int num;
int d;
}p[20010];
int w_comp(const person &a,const person &b){
if(a.w!=b.w)return a.w>b.w;
return a.num<b.num;
}
int main(){
scanf(“%d%d”,&n,&k);
for(int i=0;i<10;i++)scanf(“%d”,&e[i]);
for(int i=0;i<n;i++){
scanf(“%d”,&p[i].w);
p[i].num=i+1;
}
sort(p,p+n,w_comp);
for(int i=0;i<n;i++){
p[i].d=i%10;
p[i].w+=e[p[i].d];
}
sort(p,p+n,w_comp);
for(int i=0;i<k;i++)printf("%d ",p[i].num);
}

后续
接下来我会不断用C++来实现信奥比赛中的算法题、GESP C++考级编程题实现、白名单赛事考题实现,感兴趣的请关注,我后续将继续分享相关内容

被折叠的 条评论
为什么被折叠?



