打卡信奥刷题(2537)用C++实现信奥 P2047 [NOI2007] 社交网络

P2047 [NOI2007] 社交网络

题目描述

在社交网络(Social Network)的研究中,我们常常使用图论概念去解释一些社会现象。不妨看这样的一个问题:
在一个社交圈子里有 nnn 个人,人与人之间有不同程度的关系。我们将这个关系网络对应到一个 nnn 个结点的无向图上,两个不同的人若互相认识,则在他们对应的结点之间连接一条无向边,并附上一个正数权值 cccccc 越小,表示两个人之间的关系越密切。我们可以用对应结点之间的最短路长度来衡量两个人 sssttt 之间的关系密切程度,注意到最短路径上的其他结点为 sssttt 的联系提供了某种便利,即这些结点对于 sssttt 之间的联系有一定的重要程度。我们可以通过统计经过一个结点 vvv 的最短路径的数目来衡量该结点在社交网络中的重要程度。考虑到两个结点 AAABBB 之间可能会有多条最短路径。我们修改重要程度的定义如下:令 Cs,tC_{s,t}Cs,t 表示从 sssttt 的不同的最短路的数目,Cs,t(v)C_{s,t}(v)Cs,t(v) 表示经过 vvvsssttt 的最短路的数目;则定义:

I(v)=∑s≠v,t≠vCs,t(v)Cs,t I(v)=\sum_{s \ne v,t\ne v} \frac{C_{s,t}(v)}{C_{s,t}}I(v)=s=v,t=vCs,tCs,t(v)

为结点 vvv 在社交网络中的重要程度。为了使 I(v)I(v)I(v)Cs,t(v)C_{s,t}(v)Cs,t(v) 有意义,我们规定需要处理的社交网络都是连通的无向图,即任意两个结点之间都有一条有限长度的最短路径。现在给出这样一幅描述社交网络的加权无向图,请你求出每一个结点的重要程度。

输入格式

输入第一行有两个整数 nnnmmm,表示社交网络中结点和无向边的数目。
在无向图中,我们将所有结点从 111nnn 进行编号。

接下来 mmm 行,每行用三个整数 a,b,ca,b,ca,b,c 描述一条连接结点 aaabbb,权值为 ccc 的无向边。
注意任意两个结点之间最多有一条无向边相连,无向图中也不会出现自环(即不存在一条无向边的两个端点是相同的结点)。

输出格式

输出包括 nnn 行,每行一个实数,精确到小数点后 333 位。第 iii 行的实数表示结点 iii 在社交网络中的重要程度。

输入输出样例 #1

输入 #1

4 4
1 2 1
2 3 1
3 4 1
4 1 1

输出 #1

1.000
1.000
1.000
1.000

说明/提示

对于 111 号结点而言,只有 222 号到 444 号结点和 444 号到 222 号结点的最短路经过 111 号结点,而 222号结点和 444 号结点之间的最短路又有 222 条。因而根据定义, 111 号结点的重要程度计算为 12+12=1\frac{1}{2}+\frac{1}{2}=121+21=1。由于图的对称性,其他三个结点的重要程度也都是 111

对于 50%50\%50% 的数据,n≤10,m≤45n \le 10,m \le 45n10,m45
对于 100%100\%100% 的数据,n≤100,m≤4500n \le 100,m \le 4500n100,m4500,任意一条边的权值 ccc 是正整数且 1⩽c⩽10001 \leqslant c \leqslant 10001c1000
所有数据中保证给出的无向图连通,且任意两个结点之间的最短路径数目不超过 101010^{10}1010

C++实现

#include<bits/stdc++.h>
#define N 109
#define INF 0x3f3f3f3f
using namespace std;
typedef long long ll;
inline ll read() {
    ll x=0,f=1;int c=getchar();
    while(!isdigit(c)) {if(c=='-') f=-1;c=getchar();}
    while(isdigit(c)) {x=(x<<1)+(x<<3)+(c^48);c=getchar();}
    return x*f;
}
ll n,m,cnt[N][N],d[N][N];
double ans[N];
void floyd(){
	for(int k=1;k<=n;k++)
		for(int i=1;i<=n;i++)
			for(int j=1;j<=n;j++){
				ll c=d[i][k]+d[k][j];
				if(d[i][j]==c) cnt[i][j]+=cnt[i][k]*cnt[k][j];
				else if(d[i][j]>c) d[i][j]=c,cnt[i][j]=cnt[i][k]*cnt[k][j];
			}
	for(ll v=1;v<=n;v++)
		for(ll s=1;s<=n;s++) if(s!=v){
			for(ll t=1;t<=n;t++) if(t!=v&&t!=s){
				if(d[s][t]==d[s][v]+d[v][t]) ans[v]+=(double)cnt[s][v]*cnt[v][t]/cnt[s][t];
			}
		}
} 
int main(){
	n=read(),m=read();
	fill(d[0],d[0]+N*N,INF);
	for(int i=1;i<=n;i++) d[i][i]=0;
	for(int i=1,a,b,c;i<=m;i++){
		a=read(),b=read(),c=read();
		d[a][b]=d[b][a]=c;cnt[a][b]=cnt[b][a]=1;
	}
	floyd();
	for(int i=1;i<=n;i++)printf("%.3lf\n",ans[i]);
	return 0;
}


在这里插入图片描述

后续

接下来我会不断用C++来实现信奥比赛中的算法题、GESP考级编程题实现、白名单赛事考题实现,记录日常的编程生活、比赛心得,感兴趣的请关注,我后续将继续分享相关内容

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值