—— 原文发布于本人的微信公众号“大数据与人工智能Lab”(BigdataAILab),欢迎关注。
卷积神经网络CNN在图像识别中有着强大、广泛的应用,但有一些场景用CNN却无法得到有效地解决,例如:
- 语音识别,要按顺序处理每一帧的声音信息,有些结果需要根据上下文进行识别;
- 自然语言处理,要依次读取各个单词,识别某段文字的语义
这些场景都有一个特点,就是都与时间序列有关,且输入的序列数据长度是不固定的。
而经典的人工神经网络、深度神经网络(DNN),甚至卷积神经网络(CNN),一是输入的数据维度相同,另外是各个输入之间是独立的,每层神经元的信号只能

本文深入探讨循环神经网络(RNN),解释其在处理时间序列数据的优势,并讨论长期依赖问题及解决方案——LSTM网络。LSTM通过输入门、遗忘门和输出门实现有效记忆,适用于语音识别和自然语言处理等任务。
最低0.47元/天 解锁文章
&spm=1001.2101.3001.5002&articleId=79353934&d=1&t=3&u=58f7133a8bd2469bb6fc210d81fb4a21)
1601

被折叠的 条评论
为什么被折叠?



