—— 原文发布于本人的微信公众号“大数据与人工智能Lab”(BigdataAILab),欢迎关注。

一说起“深度学习”,自然就联想到它非常显著的特点“深、深、深”(重要的事说三遍),通过很深层次的网络实现准确率非常高的图像识别、语音识别等能力。因此,我们自然很容易就想到:深的网络一般会比浅的网络效果好,如果要进一步地提升模型的准确率,最直接的方法就是把网络设计得越深越好,这样模型的准确率也就会越来越准确。
那现实是这样吗?
先看几个经典的图像识别深度学习模型:
这几个模型都是在世界顶级比赛中获奖的著名模型,然而,一看这些模型的网络层次数量,似乎让人很失望,少则5层,多的也就22层而已,这些世界级模型的网络层级也没有那么深啊,这种也算深度学习吗?为什么不把网络层次加到成百上千层呢?
带着这个问题,我们先来看一个实验,对常规的网络(plain network,也称平原网络)直接堆叠很多层次,经对图像识别结果进行检验&#

深度学习中,增加网络层数并不总是提高模型准确率,反而可能导致梯度消失。深度残差网络(DRN/ResNet)通过残差结构和恒等映射解决这一问题,允许网络层数加深而不牺牲性能,甚至提高模型精度。ResNet在ILSVRC2015竞赛中取得显著成果,展示了深度学习模型的潜力。
最低0.47元/天 解锁文章
ResNet网络原理&spm=1001.2101.3001.5002&articleId=79353972&d=1&t=3&u=8bc0037024cb43099142385fd0325732)
701

被折叠的 条评论
为什么被折叠?



