Flink源算子、转换算子和输出算子(DataSet)

Flink是一种一站式处理的框架,既可以进行批处理(DataSet),也可以进行流处理(DataStream)

将Flink的算子分为两大类:DataSet 和 DataStream

DataSet

1. Source源算子

1.1 fromCollection

从本地集合读取数据

val env = ExecutionEnvironment.getExecutionEnvironment
val textDataSet: DataSet[String] = env.fromCollection(
  List("1,张三", "2,李四", "3,王五", "4,赵六")
)

1.2 readTextFile

从文件中读取

val textDataSet: DataSet[String]  = env.readTextFile("/data/a.txt")

1.3 readTextFile 遍历目录

对一个文件目录内的所有文件,包括所有子目录中的所有文件的遍历访问方式

val parameters = new Configuration
// recursive.file.enumeration 开启递归
parameters.setBoolean("recursive.file.enumeration", true)
val file = env.readTextFile("/data").withParameters(parameters)

1.4 readTextFile 读取压缩文件

对于以下压缩类型,不需要指定任何额外的inputformat方法,flink可以自动识别并且解压。但是,压缩文件可能不会并行读取,可能是顺序读取的,这样可能会影响作业的可伸缩性

val file = env.readTextFile("/data/file.gz")

2.Transform转换算子

因为Transform算子基于Source算子操作,所以首先构建Flink执行环境及Source算子

val env = ExecutionEnvironment.getExecutionEnvironment
val textDataSet: DataSet[String] = env.fromCollection(
  List("张三,1", "李四,2", "王五,3", "张三,4")
)

2.1 map

将DataSet中的每一个元素转换为另一个元素

  • 底层为MapFunction算子。通过调用map函数,对每个元素执行操作。
  • 常用于数据清洗、计算和转换等。

// 使用map将List转换为一个Scala的样例类

case class User(name: String, id: String)

val userDataSet: DataSet[User] = textDataSet.map {
  text =>
    val fieldArr = text.split(",")
    User(fieldArr(0), fieldArr(1))
}
userDataSet.print()

2.2 flatmap

将DataSet中的每一个元素转换为n个元素

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值