Flink是一种一站式处理的框架,既可以进行批处理(DataSet),也可以进行流处理(DataStream)
将Flink的算子分为两大类:DataSet 和 DataStream
DataSet
1. Source源算子
1.1 fromCollection
从本地集合读取数据
val env = ExecutionEnvironment.getExecutionEnvironment
val textDataSet: DataSet[String] = env.fromCollection(
List("1,张三", "2,李四", "3,王五", "4,赵六")
)
1.2 readTextFile
从文件中读取
val textDataSet: DataSet[String] = env.readTextFile("/data/a.txt")
1.3 readTextFile 遍历目录
对一个文件目录内的所有文件,包括所有子目录中的所有文件的遍历访问方式
val parameters = new Configuration
// recursive.file.enumeration 开启递归
parameters.setBoolean("recursive.file.enumeration", true)
val file = env.readTextFile("/data").withParameters(parameters)
1.4 readTextFile 读取压缩文件
对于以下压缩类型,不需要指定任何额外的inputformat方法,flink可以自动识别并且解压。但是,压缩文件可能不会并行读取,可能是顺序读取的,这样可能会影响作业的可伸缩性
val file = env.readTextFile("/data/file.gz")
2.Transform转换算子
因为Transform算子基于Source算子操作,所以首先构建Flink执行环境及Source算子
val env = ExecutionEnvironment.getExecutionEnvironment
val textDataSet: DataSet[String] = env.fromCollection(
List("张三,1", "李四,2", "王五,3", "张三,4")
)
2.1 map
将DataSet中的每一个元素转换为另一个元素
- 底层为MapFunction算子。通过调用map函数,对每个元素执行操作。
- 常用于数据清洗、计算和转换等。

// 使用map将List转换为一个Scala的样例类
case class User(name: String, id: String)
val userDataSet: DataSet[User] = textDataSet.map {
text =>
val fieldArr = text.split(",")
User(fieldArr(0), fieldArr(1))
}
userDataSet.print()
2.2 flatmap
将DataSet中的每一个元素转换为n个元素

最低0.47元/天 解锁文章
6422

被折叠的 条评论
为什么被折叠?



