1.标准差的概念
标准差定义是总体各单位标准值与其平均数离差平方的算术平均数的平方根。它反映组内个体间的离散程度。
标准计算公式:
假设有一组数值X1,X2,X3,......XN(皆为
实数),其平均值为μ,公式如图1。
标准差也被称为
标准偏差,或者实验标准差,公式为
。
简单来说,标准差是一组数据
平均值分散程度的一种度量。一个较大的标准差,代表大部分数值和其平均值之间差异较大;一个较小的标准差,代表这些数值较接近平均值。
如是总体(即估算总体方差),根号内除以n(对应excel函数:STDEVP);
如是抽样(即估算样本方差),根号内除以(n-1)(对应excel函数:STDEV);
因为我们大量接触的是样本,所以普遍使用根号内除以(n-1)。
2.第一种算法(感觉不对)
标准分是一种由原始分推导出来的相对地位量数,它是用来说明原始分在所属的那批分数中 的相对位置的。求法如下:
Z=X-X-/S
式中,X为原始分数,X-为原始分的平均数,S为原始分的标准差。
Z=X-X-/S
式中,X为原始分数,X-为原始分的平均数,S为原始分的标准差。
Excel算法:
=STANDARDIZE(F2,AVERAGE(F:F),STDEV(F:F))
Z分数是以一批分数的平均数作为参照点,以标准差作为单位表示距离的。它由正负号和绝 对数值两部分组成,正负号说明原始分是大于还是小于平均数,绝对数值说明原始分距离平 均分数的远近程度。一批分数全部转换成Z分数后,它们的整个分布形态并没有发生改变。Z 分数准确地刻划了一个分数在一批分数中的相对位置,但是,由于Z分数有负值,常带有小 数,不易被人理解和应用。因此人们在Z分数的基础上进一步转换,从而发展起了一系列其 他形式的标准分。转换通式为:
Z′=αZ+β
式中,Z′为其他形式的标准分,α是转换方程的斜率,β是转换方程的截距。
我国普通高校全国招生统一考试所使用的标准分,就是用刚才介绍的方法进行转换的。
即:
T=500+100Z
公式中取500为平均分,100为标准差
3.第二种方法
假设该年级学生共有500人,在第2行至501行中,在h2单元格单击,公式
=100*normsinv(((rank(d2,d$2:d$501,1)-1)/(counta(d$2:d$501))))+500
RANK函数
rank函数返回一个数字在数字列表中的排位,rank函数的使用格式是“rank(number,ref,order)”。
其中:number是需要找到排位的数字;ref是数字列表数组或对数字列表的引用;order为一数字,指明排位的方式。
rank函数返回一个数字在数字列表中的排位,rank函数的使用格式是“rank(number,ref,order)”。
其中:number是需要找到排位的数字;ref是数字列表数组或对数字列表的引用;order为一数字,指明排位的方式。