[bzoj2212][线段树合并]Tree Rotations

版权声明:蒟蒻的blog... https://blog.csdn.net/Rose_max/article/details/79965784

Description

Byteasar the gardener is growing a rare tree called Rotatus
Informatikus. It has some interesting features: The tree consists of
straight branches, bifurcations and leaves. The trunk stemming from
the ground is also a branch. Each branch ends with either a
bifurcation or a leaf on its top end. Exactly two branches fork out
from a bifurcation at the end of a branch - the left branch and the
right branch. Each leaf of the tree is labelled with an integer from
the range . The labels of leaves are unique. With some gardening work,
a so called rotation can be performed on any bifurcation, swapping the
left and right branches that fork out of it. The corona of the tree is
the sequence of integers obtained by reading the leaves’ labels from
left to right. Byteasar is from the old town of Byteburg and, like all
true Byteburgers, praises neatness and order. He wonders how neat can
his tree become thanks to appropriate rotations. The neatness of a
tree is measured by the number of inversions in its corona, i.e. the
number of pairs(I,j), (1< = I < j < = N ) such that(Ai>Aj) in the
corona(A1,A2,A3…An). The original tree (on the left) with
corona(3,1,2) has two inversions. A single rotation gives a tree (on
the right) with corona(1,3,2), which has only one inversion. Each of
these two trees has 5 branches. Write a program that determines the
minimum number of inversions in the corona of Byteasar’s tree that can
be obtained by rotations.

现在有一棵二叉树,所有非叶子节点都有两个孩子。在每个叶子节点上有一个权值(有n个叶子节点,满足这些权值为1..n的一个排列)。可以任意交换每个非叶子节点的左右孩子。
要求进行一系列交换,使得最终所有叶子节点的权值按照遍历序写出来,逆序对个数最少。

Input

In the first line of the standard input there is a single integer (2<
= N < = 200000) that denotes the number of leaves in Byteasar’s tree. Next, the description of the tree follows. The tree is defined
recursively: if there is a leaf labelled with ()(1<=P<=N) at the end
of the trunk (i.e., the branch from which the tree stems), then the
tree’s description consists of a single line containing a single
integer , if there is a bifurcation at the end of the trunk, then the
tree’s description consists of three parts: the first line holds a
single number , then the description of the left subtree follows (as
if the left branch forking out of the bifurcation was its trunk), and
finally the description of the right subtree follows (as if the right
branch forking out of the bifurcation was its trunk).

第一行n 下面每行,一个数x 如果x==0,表示这个节点非叶子节点,递归地向下读入其左孩子和右孩子的信息,
如果x!=0,表示这个节点是叶子节点,权值为x

1<=n<=200000

Output

In the first and only line of the standard output a single integer is
to be printed: the minimum number of inversions in the corona of the
input tree that can be obtained by a sequence of rotations.

一行,最少逆序对个数

Sample Input

3

0

0

3

1

2

Sample Output

1

题解

线段树合并的话应该挺好想的
对于一个节点的两个孩子节点的线段树,我们要把他们两个合并起来
很容易发现如果交换这两个孩子,那么他们子树内的答案是不会改变的,改变的只会是这两个孩子线段树交界内的答案
所以我们可以合并的时候分别处理交不交换这两个孩子所增加的答案,这个画个图然后yy一下就可以搞出来了吧
比较懒没用启发式合并时间可能不太优秀??
应该不需要

#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<cmath>
using namespace std;
typedef long long LL;
struct node
{
    int lc,rc,c;
}tr[4100000];int trlen;
int rt[410000],tot[410000];
void add(int &now,int l,int r,int p)
{
    if(now==0)now=++trlen;
    tr[now].c++;
    if(l==r)return ;
    int mid=(l+r)/2;
    if(p<=mid)add(tr[now].lc,l,mid,p);
    else add(tr[now].rc,mid+1,r,p);
}
LL ans,xgo,ygo,xsum,ysum;
LL xmax,ymax;
void merge(int &x,int y)
{
    if(x==0)
    {
        ysum+=(LL)(xmax-xgo)*tr[y].c;
        ygo+=(LL)tr[y].c;
        x=y;return ;
    }
    if(y==0)
    {
        xsum+=(LL)(ymax-ygo)*tr[x].c;
        xgo+=(LL)tr[x].c;
        return ;
    }
    tr[x].c+=tr[y].c;
    merge(tr[x].lc,tr[y].lc);
    merge(tr[x].rc,tr[y].rc);
}
int TT;
int n;
void getpow()
{
    TT++;int x,tmp=TT;
    scanf("%d",&x);
    if(x==0)
    {
        int lc=TT+1;getpow();
        int rc=TT+1;getpow();
        xmax=tr[rt[lc]].c,ymax=tr[rt[rc]].c;
        xsum=ysum=xgo=ygo=0;
        merge(rt[lc],rt[rc]);
        rt[tmp]=rt[lc];
        ans+=min(xsum,ysum);
    }
    else
    {
        add(rt[TT],1,n,x);
        return ;
    }
}
int main()
{
//  freopen("rot12.in","r",stdin);
//  freopen("sample.out","w",stdout);
    scanf("%d",&n);
    /*add(rt[1],1,6,1);add(rt[1],1,6,3);add(rt[1],1,6,5);
    add(rt[2],1,6,2);add(rt[2],1,6,4);add(rt[1],1,6,6);
    xmax=tr[1].c;ymax=tr[2].c;
    merge(rt[1],rt[2]);
    printf("%d %d\n",xsum,ysum);*/
    getpow();
    printf("%lld\n",ans);
    return 0;
}
阅读更多

没有更多推荐了,返回首页