半监督学习方法:协同训练

1. 协同训练算法

协同训练(co-training)算法是多视图(multi-view)学习的代表。首先解释下视图含义:以电影为例,它拥有多个属性集:图像、声音、字幕等。每个属性集就构成了一个视图。协同训练认为单凭一个视图,训练器就能取得一个很好的性能。

在这里插入图片描述
算法如下:

  1. 从未标记数据集U上随机的选取u个示例放入集合U’中
  2. 开始迭代k次:
      在标记数据集L的不同视图x1和x2上训练出两个分类器h1和h2
      用h1对U’中所有未标记元素进行标记,从中选出置信度高的p个正标记和n个负标记,加入到x2集合中
      用h2对U’中所有未标记元素进行标记,从中选出置信度高的p个正标记和n个负标记,加入到x1集合中
      随机从U中再选取2p+2n个数据补充到U’中
     之所以将预测的未标记数据集加到另一个分类器的训练集中,因为对于本分类器来说,已经能够准确预测该未标记样本,再训练没有必要。

其他的协同训练表达:

在这里插入图片描述

2. 变种

Goldman and Zhou (2000) use two learners of different types but both takes the whole feature se

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

rosefunR

你的赞赏是我创作的动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值