基于局部统一模式LBP及MB-LBP的特征提取

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/rosefun96/article/details/78444225

参考:http://blog.csdn.net/u014568921/article/details/45788523

1、IsUniform()

##检查bit是否为统一化模式(0、1转换不多于2个),把统一化模式的放在直方图收集箱bin,其他放置于公用收集箱。
function bUni = IsUniform(bits)  
% 判断某一个位串模式 bits 是否是 uniform 模式  
%  
% 输入:bits --- 二进制LBP模式串  
%  
% 返回值:bUni --- =1,if bits 是uniform模式串;=2,if bits 不是uniform模式串  

n = length(bits);  

nJmp = 0; % 位跳变数(0->1 or 1->0for ii = 1 : (n-1)  
    if( bits(ii) ~= bits(ii+1) )  
        nJmp = nJmp+1;  
    end  
end  
if bits(n) ~= bits(1)  
    nJmp = nJmp+1;  
end  

if nJmp > 2  
    bUni = false;  
else  
    bUni = true;  
end  

2、makeLBPMap()

获取映射表vecLBPMap,将灰度gray落入第vecLBPMap(gray+1)号收集箱。

function vecLBPMap = makeLBPMap  
% 生成(8,2)临域uniform LBP直方图的映射关系,即将256个灰度值映射到59个收集箱中,  
% 所有的非 uniform 放入一个收集箱中  

vecLBPMap = zeros(1, 256); %初始化映射表  

bits = zeros(1, 8); %8位二进模式串  

nCurBin = 1;  

for ii = 0:255  
    num = ii;  

    nCnt = 0;  

    % 获得灰度num的二进制表示bits  
    while (num)  
        bits(8-nCnt) = mod(num, 2);  
        num = floor( num / 2 );  
        nCnt = nCnt + 1;  
    end  

    if IsUniform(bits) % 判断bits是不是uniform模式  
        vecLBPMap(ii+1) = nCurBin;% 每个uniform模式分配一个收集箱  
        nCurBin = nCurBin + 1;  
    else  
        vecLBPMap(ii+1) = 59;%所有非uniform模式都放入第59号收集箱          
    end  

end  

% 保存映射表  
save('MatLBPMap.mat', 'vecLBPMap');  

3、getLBPFea()

获得LBP统计直方图特征

%getLBPFea.m  
function [histLBP, MatLBP] = getLBPFea(I)  
% 计算分区图像 I 的LBP特征,(8,2),uniform  
%  
% 输入:I --- 分区图像  
%  
% 返回值: MatLBP --- LBP响应矩阵  
%               histLBP --- 1维行向量,LBP直方图  

% 获得分块图像I的大小  
[m n] = size(I);  
rad = 2;  
if (m <= 2*rad) || (n <= 2*rad)  
    error('I is too small to compute LBP feature!');  
end  

MatLBP = zeros(m-2*rad, n-2*rad);  

% 读入 LBP 映射(像素灰度与直方图收集箱索引的映射)  
load MatLBPMap.mat;  

for ii = 1+rad : m-rad  
    for jj = 1+rad : n-rad  
        nCnt = 1;  


        % 计算(8,2)邻域的像素值,不在像素中心的点通过双线性插值获得其值  
        nbPT(nCnt) = I(ii, jj-rad);  
        nCnt = nCnt + 1;  

        horInterp1 = I(ii-2, jj-2) + 0.5858*( I(ii-2, jj-1) - I(ii-2, jj-2) ); % 水平方向插值  
        horInterp2 = I(ii-1, jj-2) + 0.5858*( I(ii-1, jj-1) - I(ii-1, jj-2) ); % 水平方向插值  
        verInterp = horInterp1 + 0.5858*( horInterp2 - horInterp1 ); % 竖直方向插值  
        nbPT(nCnt) = verInterp;  
        nCnt = nCnt + 1;  

        nbPT(nCnt) = I(ii-2, jj);  
        nCnt = nCnt + 1;  

        horInterp1 = I(ii-2, jj+1) + 0.4142*( I(ii-2, jj+2) - I(ii-2, jj+1) );  
        horInterp2 = I(ii-1, jj+1) + 0.4142*( I(ii-1, jj+2) - I(ii-1, jj+1) );  
        verInterp = horInterp1 + 0.5858*( horInterp2 - horInterp1 );  
        nbPT(nCnt) = verInterp;  
        nCnt = nCnt + 1;  

        nbPT(nCnt) = I(ii, jj+2);  
        nCnt = nCnt + 1;  

        horInterp1 = I(ii+1, jj+1) + 0.4142*( I(ii+1, jj+2) - I(ii+1, jj+1) );  
        horInterp2 = I(ii+2, jj+1) + 0.4142*( I(ii+2, jj+2) - I(ii+2, jj+1) );  
        verInterp = horInterp1 + 0.4142*( horInterp2 - horInterp1 );  
        nbPT(nCnt) = verInterp;  
        nCnt = nCnt + 1;  

        nbPT(nCnt) = I(ii+2, jj);  
        nCnt = nCnt + 1;  

        horInterp1 = I(ii+1, jj-2) + 0.5858*( I(ii+1, jj-1) - I(ii+1, jj-2) );  
        horInterp2 = I(ii+2, jj-2) + 0.5858*( I(ii+2, jj-1) - I(ii+2, jj-1) );  
        verInterp = horInterp1 + 0.4142*( horInterp2 - horInterp1 );  
        nbPT(nCnt) = verInterp;  


        for iCnt = 1:nCnt  
            if( nbPT(iCnt) >= I(ii, jj) )  
                MatLBP(ii-rad, jj-rad) = MatLBP(ii-rad, jj-rad) + 2^(nCnt-iCnt);  
            end  
        end  
    end  
end  



% 计算LBP直方图  
histLBP = zeros(1, 59); % 对于(8,2)的uniform直方图共有59个收集箱  

for ii = 1:m-2*rad  
    for jj = 1:n-2*rad  
        histLBP( vecLBPMap( MatLBP(ii, jj)+1 ) ) = histLBP( vecLBPMap( MatLBP(ii, jj)+1 ) ) + 1;  
    end  
end  

4特征显示

[hist,I_LBP]=getMBLBPFea(I);
imshow(I_LBP,[]);
展开阅读全文

没有更多推荐了,返回首页