Python如何完美适合大数据?

本文探讨了Python在大数据领域的主导地位,强调了其易用性、库支持、与Hadoop的兼容性以及在科技巨头如Google、Instagram和亚马逊中的应用。Python的高级库如SciPy、NumPy和Matplotlib使其成为数据科学的理想工具。
摘要由CSDN通过智能技术生成

大数据是一个不断发展的术语,它描述了公司的大量数据的数量。这些数据每天会淹没业务,并且有可能被恶意挖掘以获取用户信息,导致商业滥用数据破坏市场环境!而大数据有助于更好的决策和战略业务转移。

选择一种编程语言,并最好的加以利用。而大数据的巨大好处是一项特定于项目的任务,它直接取决于项目目标。但编程语言的选择仅取决于项目要求和个别用例。

这是一个非常关键的决定,因为如果以一种编程语言启动项目开发,则将其移植到另一种编程语言是根本不可行的。对于大数据开发,Python始终被视为理想的编程语言。

在本文中,我将带你了解为什么Python会成为当今大数据企业和开发人员的最爱。

Python成为领导者

在Python和R语言之间一直存在着激烈的战斗,若干编程语言都在争夺最佳语言。尽管,Python即将迈上领导者的宝座。

科技巨头正在将Python用作多种用途的核心语言,顶级行业参与者如何使用Python?让我们看看如何。

Google使用Python作为三种核心语言之一。Google搜索引擎和Google Spider的组件是用Python编写的。

Instagram是一个社交平台,每天有4亿活跃用户共享超过9500万张照片和视频。Instagram最近已与Django结合使用Python,该Django也是基于Python的框架。Instagram的工程师认为Python很简单,并且主要关注面向用户的功能。

亚马逊会分析其客户的购买和搜索习惯,以便向他们提供适当的建议。他们使用Python机器学习引擎与庞大的数据库进行集成。

Facebook使用Python处理其网站上的大量图像。他们每天都有大量的图像出现。因此,他们决定将Python用于连接到图像处理的后端应用程序。

Python和大数据:完美融合可以肯定地说,Python和大数据完美结合。Python包含某些高级库,例如SciPy,NumPy和Matplotlib,使Python成为用于科学计算目的的最佳工具。

更多合理的理由:

范围

Python支持高级数据对象,例如集合,列表,字典,元组等。它支持科学计算操作,例如数据帧矩阵操作等。Python中的此类功能扩大了其范围。

开源的

Python是一种开源语言,可以在Linux和Windows环境中运行。Python是在基于社区的模型中开发的。它还支持多个平台:因此,可以轻松移植到另一个平台。

速度

根据定义,Python被称为高级编程语言,这显然意味着Python具有加速代码开发过程的某些特征。它允许进行原型设计,以加快编码速度,并在代码及其执行之间提供良好的透明度。这种透明性简化了诸如代码维护和将代码传输到多用户系统中的代码库之类的任务。



图书馆支持

Python广泛用于科学计算。它包含许多分析库。库功能如下:

  • 它们支持多维数组。
  • 它们支持数组处理。
  • 这些操作是逐元素进行的。
  • 它们具有数学运算的特征。



Python拥有的分析库如下:

  • 数据分析
  • 统计分析
  • 数值计算
  • 机器学习
  • 可视化

数据处理支持

Python与语音和图像数据很好地集成在一起。这是因为其固有的功能支持非常规和非结构化数据的数据处理。在分析来自社交媒体的数据时,这是大数据的非常普遍的要求。这就是Python和大数据彼此有用的方式。

为什么Python变得非常适合大数据?

只要大数据中需要Web应用程序和数据分析或具有统计代码的生产数据库之间的集成,Python就会比其他任何编程语言都被优先考虑。大数据和Python通过以下方式相互补充。

Python是一个完整的软件包

Python是一个功能强大的软件包,可满足各种数据科学和数据分析要求。其中的一些软件包包括:
SciPy: SciPy具有技术和科学计算的意思,它具有各种模块,例如:

  • 线性代数
  • 优化
  • 积分
  • 特殊功能
  • 插补
  • 信号和图像处理
  • 快速傅立叶变换
  • ODE求解器

熊猫:该库可协助数据分析。它还提供了处理数据结构和操作的各种功能,例如对数字表和时间序列的操作。

NumPy:该库是Python和科学计算的重要组成部分。它通过高级数学功能辅助矩阵。它支持多维数组,并且可以轻松地在具有多个数据库的环境中集成。它还支持线性代数,傅立叶变换,随机数运算等。

Mlpy:这是一个在SciPy或NumPy之前工作的机器学习库。Mlpy解决了某些与机器学习相关的问题,例如在再现性,模块性,可维护性,效率和可用性之间取得合理的折衷。

Matplotlib:此Python库可帮助2D绘图用于硬拷贝发布格式,这些格式具有跨各种平台的交互环境。它具有多种功能,例如生成图,直方图,条形图,误差图,散点图,功率谱等。

Theano:这是一个专门为数值计算目的而设计的Python库。它有助于定义和优化,并评估包含多维数组的数学表达式。

NetworkX:用于研究图形,并有助于生成,操作和研究:

  • 动力学
  • 结构体
  • 复杂网络的功能

SymPy:此Python库用于符号计算,包括以下功能:

  • 基本符号算术
  • 代数
  • 结石
  • 量子物理学
  • 离散数学
  • 多种格式的计算机代数功能

Scikit学习:这是补充SciPy和NumPy的另一个机器学习库。其特点是:

  • 用于梯度增强,矢量机,DBSCAN和随机森林的聚类算法意味着
  • 回归
  • TensorFlow

TensorFlow:这是一个开源软件库,Python支持机器学习任务。它能够为以下目的构建神经网络:

  • 解码模式
  • 检测模式
  • 寻找相关性
  • 学习与推理



Python与Hadoop的兼容性

到目前为止,很明显,Python和大数据可以很好地结合在一起。同样,Hadoop和大数据是同义词。为了与这种组合很好地融合在一起,Python已经进行了固有的设计以与大数据和Hadoop兼容。Python具有可以访问HDFS API的Pydoop软件包。它还可以编写Hadoop MapReduce编程。Pydoop可以轻松解决与大数据相关的复杂问题。

易于学习

与其他编程语言相比,Python非常易于学习。甚至非程序员也认为Python是最好的,易于学习的语言。python因其简单的功能而受到初学者的青睐。初学者为什么选择Python的主要原因是其可读代码,丰富的学习资源,简单的语法,庞大的社区,自动识别和易于实现。

数据可视化

Python本质上具有广泛的可视化功能。它最近增强了其数据可视化程序包。Matplotlib为可视化奠定了基础,在此基础上创建了各种库,例如Seaborn,ggplot,pandas图等。这有助于您创建图表,可用于Web的交互式图和图形图。Python使您可以使用TabPy进行Tableau集成,还可以使用win32com和Pythoncom与QlikView进行集成。这两个都是大数据的可视化工具。

可扩展性

当涉及大量数据时,可伸缩性至关重要。如前所述,与其他语言相比,Python更快且可扩展。使用最新版本的Python,速度得到了进一步提高。

大型社区支持

大数据分析通常会处理需要社区支持的复杂问题。这意味着,如果您陷入使用Python进行开发的任何阶段,Python的社区支持人员将帮助您解决问题。他们提供的支持非常快捷且有用。它具有广泛而活跃的社区支持,可以为全球的数据科学家和程序员提供专家级的解决方案。

结论,Python和大数据在分析流中共同形成了强大的计算能力。除了Python培训课程外,在Intellipaat上,你还将找到大量行业认可的培训课程,这些课程可以帮助您快速发展自己的职业。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值