Maximal Information Coefficient (MIC)最大互信息系数

MIC是大数据集中用来计算变量之间相关性的一种方法,该方法很有效:不需要对数据分布做任何假设,估计变量之间的相关性(包括线性和非线性)

下载下面链接中的压缩文件并解压缩之后即可进行编译:

http://pan.baidu.com/s/1bSEG2a

1.打开matlab 切换到如下目录

cd …..\minepy-1.2.0\minepy-1.2.0\matlab

2.使用mex指令编译mine.c文件

mex mine_mex.c ../libmine/mine.c

3.会在当前目录(/matlab/)下得到mine_mex.mex(或mine_mex.mexw32文件,根据系统不同)

4.将mine.m 和mine_mex.mexw32文件放在同一文件夹即可使用

5.官方例子:

运行结果:

Mic值为1.0证明x与y之间有很强的相关性(例子中使用的是正弦关系),可见mic也能检测非线性相关性

注意:x与y必须是行向量

PS:链接中的安装包也可以在python中安装,如果链接失效可以在博客中给我留言,并给出接收邮箱。

参考链接:

http://blog.csdn.net/u014271612/article/details/51781250

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值