【AI简报20210702期】骁龙888 plus发布、RISC-V处理器大飞跃

本文汇总了近期嵌入式AI领域的重大进展,包括骁龙888 Plus芯片的发布,AI性能显著提升;RISC-V处理器实现大飞跃,推出全球首颗模拟AI芯片;百度AI芯片业务独立,昆仑芯估值达130亿人民币。此外,文中还探讨了车规级AI芯片在汽车智能化中的关键作用,以及TensorFlow模型量化的原理与优势。
摘要由CSDN通过智能技术生成

RT-AK进展

1. RT-AK 开源:RT-Thread面向嵌入式端开发的人工智能套件

Github链接:https://github.com/RT-Thread/RT-AK

RT-Thread面向嵌入式人工智能开发套件RT-AK已经开源一段时间了,从各个方面收到的反馈都比较好,但同时也存在着一定的不足。为了能够为广大开发者提供更加优质便捷的嵌入式AI开发工具链,希望更多的读者能够加入到RT-AK的试用和使用当中,积极反馈您在使用过程中遇到的问题和迫切需求,从而进一步提升RT-AK工具链的品质,最终更好服务广大的AIOT开发者。当前RT-AK工具链支持两个系列的芯片,一种是STM32系列MCU,另一类是带有npu的kendryte系列MCU,未来我们也将会尽可能的增加更多的芯片平台支持。如果您是嵌入式AI的开发者,您更关心哪款芯片的支持,可以在文末留言,我们会尽可能的回复您。如果您是AI芯片的产商,并希望集成RT-Thread和RT-AK系统,也欢迎您联系我们。关于RT-AK的详细内容,可以参考以下链接:

RT-AK开源轻松实现一键部署AI模型至RT-Thread解析:http://www.elecfans.com/d/1591029.html

RT-Thread AI Kit 之 RISC-V 插件初体验: https://mp.weixin.qq.com/s/UMED8uHOiURJEhyJ_cLtBA

RT-AK DEMO 实战教程: https://mp.weixin.qq.com/s/8l1L8zsbh8vwUbjvt5bL_A

嵌入式AI

2. 下半年旗舰芯片骁龙888 Plus发布,AI性能大幅提升

原文链接:

https://new.qq.com/rain/a/20210629A0CP0B00

根据高通官网给出的介绍,全新骁龙888 Plus 5G移动平台,作为骁龙888旗舰移动平台的升级产品到来。凭借强劲性能、超快速度和顶级连接,骁龙888 Plus正助力移动终端提供旗舰级的智能娱乐体验,包括AI加持的游戏、流传输、影像等。

据悉,该平台支持完整的Snapdragon Elite Gaming特性,能够提供超流畅的操控响应、色彩丰富的HDR图形画质和移动端首创的端游级特性。

与骁龙888相比,骁龙888 Plus集成高通Kryo 680 CPU,超级内核主频高达3.0GHz,支持第6代高通AI引擎,其算力达每秒32万亿次运算(32 TOPS),AI性能提升超过20%。

3. 武汉工程大学打造国内领先嵌入式人工智能实验室样本间

原文链接:

https://www.sohu.com/a/473650067_100150001

伴随着人工智能时代的到来,相关专业人才的巨大缺口推动着众多高校不断新增人工智能专业。如何着力提升人工智能领域人才培养水平,为社会提供更加充分的人才支撑,成为了每个高校教育工作者思考的关键问题。

武汉工程大学、蓝鸽科技和Intel合作,设计了AI基础知识、AI应用技能、AI产教有机融合的多功能、一体化的专业人工智能实训室解决方案。同时,还配备了完整的AI课程体系、丰富的AI实训套件、专业的AI实训平台、稳定的边缘计算设备,最大程度地满足了该校“教、学、练、考、用”等全方位场景化应用,成为当今高校人工智能学科建设和专业人才培养计划具有示范意义的创新实践路径。

武汉工程大学人工智能学科老师曾表示,硬件设备和软件资源的简单“拼盘化”,并不能完全满足师生在人工智能领域的教学需求和对实训资源的操作需求。而新建设的嵌入式人工智能实训室才能帮助学校有力地培养人工智能高端人才,完善人工智能领域学科布局;帮助学生更好实现创新突破和实训成果转化,满足自身专业技能培养需求。

希望武汉工程大学可以在嵌入式AI人才培养方面为我国人工智能的研发助力!

4. 全球首颗!RISC-V处理器大飞跃,模拟AI芯片问世

原文链接:

https://www.163.com/dy/article/GDMQ12SD05372HGL.html

近日,据外媒披露,全球首款集成了RISC-V指令集的模拟AI芯片——Mythic AMP在美国奥斯汀问世。

这是一款单芯片模拟计算设备,并采用Mythic的模拟计算引擎,而不是利用传统的数字来创建处理器,以便于将内存集成到处理器中,耗电量比传统模拟处理器低 10 倍。

熟悉传统计算原理的都知道,在常规计算机中,数据会定期从 DRAM 内存传输到 CPU。

内存保存程序和数据。计算机中的处理器和内存是分开的,数据在两者之间移动。处理器无论速度有多快,在从内存中获取数据时都必须处于空闲状态,并且取决于传输速率——这就是所谓的冯诺依曼限制。因此,将计算和内存合并到单个设备中就成为了大家探索的解决方法,而模拟 AI 就消除了冯诺依曼瓶颈,从而显着提高了性能。

5.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值