Vision Board系列教程 | 神经网络模型训练及部署指南

准备工作

  • win10/11系统的电脑

  • 建议1张FAT32格式的SD卡

  • 建议自备1根Type-C数据线

资料获取

网盘中主要包括Vision Board开发所需要的常用开发工具,百度网盘资料链接:(https://pan.baidu.com/s/1_9UNZbchYImCzTTRpwsmFw?pwd=azsd)

在正式进行开发前,需要安装下图中勾选的四个软件!!!

8b225a928581586bfe1f5cac56f6bbac.png

注册账号并创建Edge Impulse工程

打开Edge Impluse网站,注册登录。随后在项目标签页创建新项目:

461e12084fa4b22dd993c29752073291.png

上传训练集

按照以下步骤,依次点击Dashboard->Add existing data->Upload data。

759bd37c412a468fe6ef1abf085e091d.png

1003791e93244556a46598808e073785.png

注意:若未在数据集中对图片进行label注释(可参考官方文章),需要手动进行添加标签,或直接选择Enter label进行标签定义。分3次单独上传3个不同图片的文件夹,并添加label为ship、truck和plane。

生成特征

点击左侧Impulse design->Create Impulse,依次点击Add a processing block、Add a learning block进行输入数据对象、训练模型的选择,并点击保存。(Add 带星标的即可)

1dbcb14e59255ffc5f5ecfb9137a99e3.png

继续点击左侧Image,Color depth选择RGB,点击保存。接下来会自动跳转到生成特征界面,点击生成特征按钮,等待特征生成,结束后会有三维图像显示。

913804016c4d95691087828ea2b146ff.png

迁移训练

点击左侧Transfer learning按钮,依次设置训练参数:训练周期、学习率等参数。随后选择自己实验最符合的训练模型(默认选第一个),点击开始训练。

f54cca794c39191f8a57a2a1ec97c4be.png

如果最后的结果和准确率不满足自己的实验要求,可尝试重新训练,重新更改参数及训练模型。

9321c7d33878de558939281455daecf5.png

在Vision Board上部署

在左侧点击Deployment,搜索OpenMV library,点击Build,等待固件生成。

3195eed39a6eab2fd08b4d61075200d8.png

将下载下来的压缩文件解压("trained.tflite"、"labels.txt"、"ei_image_classification.py"),将ei_image_classification.py改名为main.py,随后将3个文件全部复制到sd卡中去(取下SD卡,使用读卡器将3个文件复制到sd卡)。

63782c8afbd9b74e9abf42ff1ed15f77.png

用Type-C线连接Vision Board USB-OTG口,随后将sd卡中的main.py拖入OpenMV IDE中,打开并运行,此时可以在串口终端看见识别的结果及准确率。

cd92ffbe3badad9eaa5cb5ed30e6069b.png

使用虚拟U盘功能

点击RT-Thread Setting-->TinyUSB->配置项

e725ab3343d87ef80c529dc2921277f9.png

在TinyUSB选项处依次点开USING USB device->Using Mass Storage Class(MSC),将The name of the block device used by MSC中的内容更改为sd,随后保存。重新点击编译,编译完成后即可烧录到开发板。(由于文件较大,时间可能会比较长)

注意:烧录需要将Type-C线插到USB-DBG口,烧录完成后再将线插到USB-OTG口,使能USB复合设备后,每次第一次上电需要先等待弹出U盘后再连接 OpenMV IDE!!否则会卡死!!

f29ec43906baf54e0e57d30cec4c01f5.png

弹出U盘后就可以把生成OpenMV固件拖至u盘中,随后连接OpenMV IDE,即可体验自己训练的神经网络模型。

购买 Vision Board

09e1327dad57534af357a1b1a6f649d1.jpeg

https://m.tb.cn/h.g0TaaKTnfx6iM2W?tk=lI8TWrhauqR 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值