引言
在现代应用中,快速且高效地处理和搜索大量文本和图像数据是至关重要的。随着人工智能和自然语言处理的发展,出现了越来越多的工具来满足这一需求。本文将介绍Marqo,一种先进的张量搜索引擎。我们将探讨其在LangChain生态系统中的使用方法,为您的应用程序增强搜索能力提供实用见解。
Marqo的核心功能
Marqo是一个利用嵌入存储在内存HNSW索引中的张量搜索引擎,能够实现尖端的搜索速度。其特点包括:
- 可扩展性:能够水平分片以处理数亿文档索引。
- 异步和非阻塞数据上传和搜索。
- 模型选择灵活:支持使用预配置模型或自定义模型。
- 高效推理:内置ONNX支持以提高CPU和GPU上的推理速度。
其混合文本和图像数据的能力,使得将其他系统的数据集成到LangChain中变得更加便利。
安装与设置
开始使用Marqo非常简单,只需以下步骤即可安装Python SDK:
pip install marqo
要在本地环境运行Marqo,可以使用官方提供的Docker镜像进行部署。这不仅让您快速上手,还能在需要时切换到托管云服务。
Marqo在LangChain中的应用
在LangChain中,通过包装器可以轻松集成Marqo索引。这使得您可以在vectorstore框架中使用Marqo,支持多模型索引,并能处理混合文档格式。
首先,您需要导入Marqo的vectorstore包装器:
from langchain_community.vectorstores import Marqo
请注意,使用现有的多模态索引实例化Marqo vectorstore后,将无法通过add_texts
方法加入新文档。
代码示例
以下是一个简单的代码示例,展示如何在LangChain中使用Marqo:
from langchain_community.vectorstores import Marqo
# 假设已设置 {AI_URL} API端点以使用API代理服务提高访问稳定性
client = Marqo(client_url='{AI_URL}')
# 创建索引
index = client.create_index('my_index')
# 添加文档
documents = [
{"id": "1", "content": "这是一个包含文本和图像的测试文档。", "metadata": {"type": "text"}},
{"id": "2", "content": "另一个测试文档。", "metadata": {"type": "text"}},
]
index.add_documents(documents)
# 进行搜索
results = index.search("测试")
print("搜索结果:", results)
常见问题和解决方案
- 网络连接问题:在某些地区,直接访问API可能不稳定。推荐使用API代理服务,以确保稳定的网络连接。
- 模型兼容性问题:确认使用的嵌入模型与您正在处理的数据类型兼容。
- 文档添加限制:一旦实例化为多模态索引,无法动态添加新文档。重新规划索引架构以适应新数据。
总结与进一步学习资源
通过本文,我们探索了Marqo的主要功能及其在LangChain生态系统中的应用。Marqo为搜索引擎提供了一个强大的工具,可以处理复杂的数据类型组合。要深入了解更多内容,可以参考以下资源:
参考资料
- Marqo官方网站:https://www.marqo.ai
- LangChain官方文档:https://www.langchain.com
如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
—END—