在本指南中,我们将探讨如何在图数据库上创建一个问答链。这些系统允许我们对图数据库中的数据进行提问,并获得自然语言的答案。
⚠️ 安全提示 ⚠️
构建图数据库的问答系统需要执行模型生成的图查询,这其中存在一定的风险。确保您的数据库连接权限仅限于链/代理的需求,这将有助于减轻但不能消除构建模型驱动系统的风险。如需更多安全最佳实践,请参阅此处。
架构
从高层次来看,大多数图链的步骤如下:
- 将问题转换为图数据库查询:模型将用户输入转换为图数据库查询(例如,Cypher)。
- 执行图数据库查询:执行图数据库查询。
- 回答问题:模型使用查询结果响应用户输入。
设置
首先,获取所需的包并设置环境变量。在本例中,我们将使用Neo4j图数据库。
%pip install --upgrade --quiet langchain langchain-community langchain-openai neo4j
我们默认使用OpenAI模型。
import getpass
import os
os.environ["OPENAI_API_KEY"] = getpass.getpass()
# Uncomment the below to use LangSmith. Not required.
# os.environ["LANGCHAIN_API_KEY"] = getpass.getpass()
# os.environ["LANGCHAIN_TRACING_V2"] = "true"
接下来,我们需要定义Neo4j凭据。按照这些安装步骤设置Neo4j数据库。
os.environ["NEO4J_URI"] = "bolt://localhost:7687"
os.environ["NEO4J_USERNAME"] = "neo4j"
os.environ["NEO4J_PASSWORD"] = "password"
下面的示例将创建与Neo4j数据库的连接,并用有关电影及其演员的示例数据填充它。
from langchain_community.graphs import Neo4jGraph
graph = Neo4jGraph()
# 导入电影信息
movies_query = """
LOAD CSV WITH HEADERS FROM
'https://raw.githubusercontent.com/tomasonjo/blog-datasets/main/movies/movies_small.csv'
AS row
MERGE (m:Movie {id:row.movieId})
SET m.released = date(row.released),
m.title = row.title,
m.imdbRating = toFloat(row.imdbRating)
FOREACH (director in split(row.director, '|') |
MERGE (p:Person {name:trim(director)})
MERGE (p)-[:DIRECTED]->(m))
FOREACH (actor in split(row.actors, '|') |
MERGE (p:Person {name:trim(actor)})
MERGE (p)-[:ACTED_IN]->(m))
FOREACH (genre in split(row.genres, '|') |
MERGE (g:Genre {name:trim(genre)})
MERGE (m)-[:IN_GENRE]->(g))
"""
graph.query(movies_query)
图模式
为了让LLM能够生成Cypher语句,它需要关于图模式的信息。当您实例化一个图对象时,它会检索关于图模式的信息。如果您稍后对图形进行任何更改,可以运行refresh_schema
方法来刷新模式信息。
graph.refresh_schema()
print(graph.schema)
节点属性如下:
- Movie {imdbRating: FLOAT, id: STRING, released: DATE, title: STRING}
- Person {name: STRING}
- Genre {name: STRING}
- Chunk {id: STRING, question: STRING, query: STRING, text: STRING, embedding: LIST}
关系属性如下:
- (:Movie)-[:IN_GENRE]->(:Genre)
- (:Person)-[:DIRECTED]->(:Movie)
- (:Person)-[:ACTED_IN]->(:Movie)
太好了!我们已经有了一个可以查询的图数据库。现在让我们尝试将其连接到LLM。
链
让我们使用一个简单的链,它接受一个问题,将其转化为Cypher查询,执行查询,并使用结果回答原始问题。LangChain提供了一个内置的链,用于此工作流,设计用于与Neo4j一起使用:GraphCypherQAChain
from langchain.chains import GraphCypherQAChain
from langchain_openai import ChatOpenAI
llm = ChatOpenAI(model="gpt-3.5-turbo", temperature=0)
chain = GraphCypherQAChain.from_llm(graph=graph, llm=llm, verbose=True)
response = chain.invoke({"query": "What was the cast of the Casino?"})
print(response)
验证关系方向
LLMs有时在生成的Cypher语句中可能会出现关系方向的问题。由于图模式是预定义的,我们可以通过使用validate_cypher
参数来验证并可选地纠正生成的Cypher语句中的关系方向。
chain = GraphCypherQAChain.from_llm(
graph=graph, llm=llm, verbose=True, validate_cypher=True
)
response = chain.invoke({"query": "What was the cast of the Casino?"})
print(response)
下一步
对于更复杂的查询生成,我们可能希望创建少样本提示或添加查询检查步骤。对于像这样的高级技术和更多内容,请查看:
- 提示策略:高级提示工程技术。
- 映射值:从问题映射值到数据库的技术。
- 语义层:实现语义层的技术。
- 构建图:构建知识图的技术。
今天的技术分享就到这里,希望对大家有帮助。开发过程中遇到问题也可以在评论区交流~
—END—