Anaconda配置tensorflow-gpu教程

最近在入门tensorflow深度学习,配置环境吃了不少苦头,写个完整的教程

首先得在自己主机上装cuda(我之前就是主机上没装cuda,只在虚拟环境里面装了,结果jupyter里面怎么调都识别不到GPU)

打开Nvidia控制面板,左上角帮助-系统信息-组件

NVCUDA64.DLL后面的NVIDIA CUDA 12.1就是你的显卡支持的CUDA版本,去CUDA官网

CUDA Toolkit Archive | NVIDIA Developericon-default.png?t=O83Ahttps://developer.nvidia.com/cuda-toolkit-archive找到对应版本的CUDA Toolkit,下载安装

就默认安装到C盘默认位置就行

然后去cudnn官网,找到适合版本的cudnn安装

cuDNN Archive | NVIDIA Developericon-default.png?t=O83Ahttps://developer.nvidia.com/cudnn-archive装完之后打开anaconda prompt

先添加清华镜像源

conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/msys2/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config --set show_channel_urls yes

创建虚拟环境,建议是装python3.8

conda create -n tf python=3.8

 激活虚拟环境

conda activate tf

然后安装虚拟环境的cuda

conda install cudatoolkit==11.2.0

安装虚拟环境的cudnn

conda install cudnn==8.1.0.77

安装tensorflow-gpu(用pip的时候要关梯子,不然会报错)

pip install tensorflow-gpu==2.10.0

 然后载入到jupyter notebook

conda install ipykernel
python -m ipykernel install --name tf

如果前面运行都正确,打开jupyter就能用了,可以运行下面两段代码测试一下

第一段:输出信息里面有GPU就成功了

import tensorflow as tf
gpus = tf.config.experimental.list_physical_devices(device_type='GPU')
cpus = tf.config.experimental.list_physical_devices(device_type='CPU')
print(gpus, cpus)

第二段,输出use gpu 为true就ok了 

import tensorflow as tf
version=tf.__version__  #输出tensorflow版本
gpu_ok=tf.test.is_gpu_available()  #输出gpu可否使用
print("tf version:",version,"\nuse GPU:",gpu_ok)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值