最近在入门tensorflow深度学习,配置环境吃了不少苦头,写个完整的教程
首先得在自己主机上装cuda(我之前就是主机上没装cuda,只在虚拟环境里面装了,结果jupyter里面怎么调都识别不到GPU)
打开Nvidia控制面板,左上角帮助-系统信息-组件
NVCUDA64.DLL后面的NVIDIA CUDA 12.1就是你的显卡支持的CUDA版本,去CUDA官网
CUDA Toolkit Archive | NVIDIA Developerhttps://developer.nvidia.com/cuda-toolkit-archive找到对应版本的CUDA Toolkit,下载安装
就默认安装到C盘默认位置就行
然后去cudnn官网,找到适合版本的cudnn安装
cuDNN Archive | NVIDIA Developerhttps://developer.nvidia.com/cudnn-archive装完之后打开anaconda prompt
先添加清华镜像源
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/msys2/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config --set show_channel_urls yes
创建虚拟环境,建议是装python3.8
conda create -n tf python=3.8
激活虚拟环境
conda activate tf
然后安装虚拟环境的cuda
conda install cudatoolkit==11.2.0
安装虚拟环境的cudnn
conda install cudnn==8.1.0.77
安装tensorflow-gpu(用pip的时候要关梯子,不然会报错)
pip install tensorflow-gpu==2.10.0
然后载入到jupyter notebook
conda install ipykernel
python -m ipykernel install --name tf
如果前面运行都正确,打开jupyter就能用了,可以运行下面两段代码测试一下
第一段:输出信息里面有GPU就成功了
import tensorflow as tf
gpus = tf.config.experimental.list_physical_devices(device_type='GPU')
cpus = tf.config.experimental.list_physical_devices(device_type='CPU')
print(gpus, cpus)
第二段,输出use gpu 为true就ok了
import tensorflow as tf
version=tf.__version__ #输出tensorflow版本
gpu_ok=tf.test.is_gpu_available() #输出gpu可否使用
print("tf version:",version,"\nuse GPU:",gpu_ok)