DeepSeek与绿联NAS强强联合:UGOS Pro系统部署教程
时下最火的AI工具当属 DeepSeek!
这款高效的工具能极大提升工作和学习效率,不容错过!今天,我将为大家带来一篇详细教程,教你如何在 绿联NAS UGOS Pro系统 上部署 DeepSeek-R1 大语言模型,让你的工作更高效,学习更轻松!
部署前的准备:安装Ollama
在开始部署DeepSeek之前,首先需要安装 Ollama。
Ollama 是一个大型语言模型框架,可以理解为 AI 模型的宿主平台。
如果你希望拥有更美观的UI界面,我们还需要安装其他应用来配合。
为此,我们将通过部署 OpenWebUI 来运行 DeepSeek-R1 模型。
什么是 OpenWebUI?
OpenWebUI 是一款可扩展、功能丰富且用户友好的自托管 Web 界面,旨在离线运行,并支持多种 LLM(大型语言模型)运行器,包括 Ollama 和与 OpenAI 兼容的 API。
使用 Docker Compose 部署 OpenWebUI
推荐使用 Docker Compose 部署 OpenWebUI,这种方式能够简化容器的部署与管理,特别适合需要同时管理多个容器的场景。
以下是部署步骤:
-
打开 Docker 应用,点击【项目】 > 【创建】以启动项目创建向导。
-
在向导中,上传 OpenWebUI 的 Docker Compose 配置文件。(你可以通过在绿联NAS私有云公众号后台发送【DeepSeek】关键词获取配置文件。)
-
上传完配置文件后,点击【立即部署】,系统将自动拉取镜像并启动容器。
访问 OpenWebUI
-
在局域网内打开浏览器,访问部署的地址,进入登录页面后点击“开始使用”。
-
初次访问时,需要创建管理员账号并设置用户名、邮箱及密码。
-
使用新创建的账号登录。
注意:
- 初次访问时,可能会遇到连接被拒或内部错误的情况。请稍等几分钟后再尝试加载。
- 如果登录时界面显示空白,这是因为后台正在加载数据,稍等片刻即可。你可以通过查看日志文件来确认加载进度和状态。
- 成功登录后,你将进入 OpenWebUI 主界面。
下载并部署 DeepSeek-R1 模型
-
访问 Ollama 官网:https://ollama.com,点击左上角的“Models”。
-
选择 DeepSeek-R1 模型,点击进入详情页。
-
根据设备配置选择模型大小:
- 1.5B:适合8GB RAM的设备,轻量化优化版;
- 7B:适合16GB RAM的设备,通用推理模型;
- 8B:适合32GB RAM的设备,高准确性模型;
- 14B:适合64GB RAM的设备,增强推理能力;
- 32B:适合128GB RAM的设备,强大分析与输出能力;
- 70B:适合256GB RAM的高端设备,高级AI应用;
- 671B:需要512GB RAM,专家混合模型,适用于最先进的推理任务。
本教程中,我们的设备是 DXP480T Plus,搭载 Intel i5 1235u 处理器,因此我们选择 1.5B 模型。
4.复制旁边的拉取命令
5.登录 Open WebUI 的 Web 界面,点击左上角搜索输入模型名称(例如:ollama run deepseek-r1:1.5b) 直接下载使用。
6.(可选)或返回 UGOS Pro 的 Docker 应用,进入【容器】 > 选中 Open WebUI 容器 > 点击【终端】 > 新增 Bash 连接。
7.(可选)在 Bash 终端中粘贴拉取以下命令,等待模型下载完成。
ollama run deepseek-r1:1.5b
8.(可选)显示success说明模型下载完成,重启容器。
9.(可选)登录Open WebUI,确认模型是否已加载。
使用 DeepSeek-R1 模型
模型成功部署后,你可以在 OpenWebUI 中创建新的对话,输入 “hello world” 或其他问题,DeepSeek-R1 就会给出响应。
注意:
- 部署大模型会显著增加 NAS 的 CPU 和内存负担,请避免在高负载任务中使用。
注意事项
- 本教程中的镜像由第三方开发和维护,本人不承担因用户操作不当、第三方软件漏洞或镜像更新引发的风险,包括但不限于:
- 第三方镜像可能导致你在 UGOS Pro 系统中的文件意外修改或删除;
- 使用不安全的镜像可能会导致数据上传至第三方服务器,造成隐私和数据泄露风险;
- 请谨慎选择可信来源的镜像,以确保系统的稳定性和数据安全。
其他事项
- 容器的文件路径可根据个人需求自定义。
- 网页访问的容器端口与本地端口应保持一致。如有冲突,请修改端口。
- 容器之间的本地端口不能相同,否则会导致容器无法启动。
- 镜像仅提供搭建教程,具体使用方法和深度玩法请参考网络资源。
- 镜像由第三方开发,相关配置变动和 bug 修复请关注官方信息。
- 为提高性能,建议将 Docker 配置目录存储在 SSD 硬盘 中。