利用混合马尔可夫模型对用户搜索行为进行聚类

最近一直做用户使用搜索引擎行为模式聚类的工作,开始尝试用K-means,效果非常不好,用户Session中的动作之间有较强

 

的关联,这种基于距离的聚类无法体现这种关系。继而,转向基于模型的聚类方法,而马尔可夫模型及隐马模型是对这种时间

 

序列建模的很好工具,因此尝试了下混合马尔可夫模型:认为每一个Session序列是有一个马尔可夫模型产生的,而模型的选

 

择又遵循一定的概率分布;并用EM算法求解模型的参数。

 

该模型已在Hadoop上实现,跑了一天的数据,大于1千多万的Session序列,初步看了看效果,还是蛮不错滴。

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值