Hoof, Paper, Scissors

题目链接

大意:石头剪刀布游戏,共有n轮比赛,每一轮预先知道对方策略,要求在m次变换中求得能赢的最大值

样例输入

5 1
P
P
H
P
S

 

样例输出

4

前四次出S最后一次出H,只变化了一次,最大赢四次

看了两篇博客,还问过大佬,但我就是想不到怎么通过三维来转移,为了不再次误导,就不说自己钻到哪个死胡同出不来了

思路比较清晰的博客在这里

具体的思路在注释里面了,就不多巴拉巴拉了

有不对的,欢迎打脸指正

#include <algorithm>
#include <iostream>
using namespace std;

const int maxn = 1e5 + 5;
int n, m, a[maxn], dp[maxn][22][3];
///dp[i][j][k]代表在第i次策略为k共变换j次可以赢的最大次数
int vs[3][3] = {0, 1, 0, 0, 0, 1, 1, 0, 0};//i,j得分
///H - 0 S - 1 P - 2
int main()
{
    char c;
    cin >> n >> m;
    for (int i = 1; i <= n; ++i){
        cin >> c;
        if(c == 'H')    a[i] = 0;
        else if (c == 'S')  a[i] = 1;
        else    a[i] = 2;
    }
    for (int j = 0; j <= m; ++j)
        for (int i = 1; i <= n; ++i)
            for (int k = 0; k < 3; ++k)
                dp[i][j][k] = (j ? max(dp[i - 1][j][k],
                                       max(dp[i - 1][j - 1][(k + 1)%3], dp[i - 1][j - 1][(k + 2)%3]))
                               : dp[i - 1][j][k])
                                + vs[k][a[i]];
    /*dp[i][j][k]的状态转移来源:本次策略为k所以本次得分为vs[k][a[i]]不要忘记加
    **如果j = 0,那么相当于一个策略走到头,没有改变,只需要从i-1转移即可
    **else的话要由三种状态转移过来1)如果上一次策略也为k的话那么在上一次就必须已经变化j次了
    **2)如果上一次策略不是k的话,说明要占一次变化次数,那么,前i-1轮只能变化j-1次
    */
    cout << max(dp[n][m][0], max(dp[n][m][1], dp[n][m][2])) << endl;
    //最后答案由n轮m次最后一次策略为0,1,2中选出
    return 0;
}

我还是不很懂,题做得太少了,只能想到怎么设计状态,不会状态转移,所以对自己设计的状态也不自信

两天只能搞懂一道题这效率我也是醉了

  • 0
    点赞
  • 0
    收藏 更改收藏夹
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Rwqgmz

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值