众所周知,Hadoop框架使用Mapper将数据处理成一个<key,value>键值对,再网络节点间对其进行整理(shuffle),然后使用Reducer处理数据并进行最终输出。
在上述过程中,我们看到至少两个性能瓶颈:
- 如果我们有10亿个数据,Mapper会生成10亿个键值对在网络间进行传输,但如果我们只是对数据求最大值,那么很明显的Mapper只需要输出它所知道的最大值即可。这样做不仅可以减轻网络压力,同样也可以大幅度提高程序效率。
- 使用专利中的国家一项来阐述数据倾斜这个定义。这样的数据远远不是一致性的或者说平衡分布的,由于大多数专利的国家都属于美国,这样不仅Mapper中的键值对、中间阶段(shuffle)的键值对等,大多数的键值对最终会聚集于一个单一的Reducer之上,压倒这个Reducer,从而大大降低程序的性能。
Hadoop通过使用一个介于Mapper和Reducer之间的Combiner步骤来解决上述瓶颈。你可以将Combiner视为Reducer的一个帮手,它主要是为了削减Mapper的输出从而减少网络带宽和Reducer之上的负载。如果我们定义一个Combiner,MapReducer框架会对中间数据多次地使用它进行处理。
如果Reducer只运行简单的分布式方法,例如最大值、最小值、或者计数,那么我们可以让Reducer自己作为Combiner。但许多有用的方法不是分布式的。以下我们使用求平均值作为例子进行讲解:
Mapper输出它所处理的键值对,为了使单个DataNode计算平均值Reducer会对它收到的<key,value>键值对进行排序,求和。
由于Reducer将它所收到的<key,value>键值的数目视为输入数据中的<key,value>键值对的数目,此时使用Combiner的主要障碍就是计数操作。我们可以重写MapReduce程序来明确的跟踪计数过程。
代码如下:
- packagecom;
- importjava.io.IOException;
- importorg.apache.hadoop.conf.Configuration;
- importorg.apache.hadoop.conf.Configured;
- importorg.apache.hadoop.fs.Path;
- importorg.apache.hadoop.io.DoubleWritable;
- importorg.apache.hadoop.io.LongWritable;
- importorg.apache.hadoop.io.Text;
- importorg.apache.hadoop.mapreduce.Job;
- importorg.apache.hadoop.mapreduce.Mapper;
- importorg.apache.hadoop.mapreduce.Reducer;
- importorg.apache.hadoop.mapreduce.lib.input.FileInputFormat;
- importorg.apache.hadoop.mapreduce.lib.input.TextInputFormat;
- importorg.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
- importorg.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
- importorg.apache.hadoop.util.Tool;
- importorg.apache.hadoop.util.ToolRunner;
- publicclassAveragingWithCombinerextendsConfiguredimplementsTool{
- publicstaticclassMapClassextendsMapper<LongWritable,Text,Text,Text>{
- staticenumClaimsCounters{MISSING,QUOTED};
- //MapMethod
- publicvoidmap(LongWritablekey,Textvalue,Contextcontext)throwsIOException,InterruptedException{
- Stringfields[]=value.toString().split(",",-20);
- Stringcountry=fields[4];
- StringnumClaims=fields[8];
- if(numClaims.length()>0&&!numClaims.startsWith("\"")){
- context.write(newText(country),newText(numClaims+",1"));
- }
- }
- }
- publicstaticclassReduceextendsReducer<Text,Text,Text,DoubleWritable>{
- //ReduceMethod
- publicvoidreduce(Textkey,Iterable<Text>values,Contextcontext)throwsIOException,InterruptedException{
- doublesum=0;
- intcount=0;
- for(Textvalue:values){
- Stringfields[]=value.toString().split(",");
- sum+=Double.parseDouble(fields[0]);
- count+=Integer.parseInt(fields[1]);
- }
- context.write(key,newDoubleWritable(sum/count));
- }
- }
- publicstaticclassCombineextendsReducer<Text,Text,Text,Text>{
- //ReduceMethod
- publicvoidreduce(Textkey,Iterable<Text>values,Contextcontext)throwsIOException,InterruptedException{
- doublesum=0;
- intcount=0;
- for(Textvalue:values){
- Stringfields[]=value.toString().split(",");
- sum+=Double.parseDouble(fields[0]);
- count+=Integer.parseInt(fields[1]);
- }
- context.write(key,newText(sum+","+count));
- }
- }
- //runMethod
- publicintrun(String[]args)throwsException{
- //CreateandRuntheJob
- Jobjob=newJob();
- job.setJarByClass(AveragingWithCombiner.class);
- FileInputFormat.addInputPath(job,newPath(args[0]));
- FileOutputFormat.setOutputPath(job,newPath(args[1]));
- job.setJobName("AveragingWithCombiner");
- job.setMapperClass(MapClass.class);
- job.setCombinerClass(Combine.class);
- job.setReducerClass(Reduce.class);
- job.setInputFormatClass(TextInputFormat.class);
- job.setOutputFormatClass(TextOutputFormat.class);
- job.setOutputKeyClass(Text.class);
- job.setOutputValueClass(Text.class);
- System.exit(job.waitForCompletion(true)?0:1);
- return0;
- }
- publicstaticvoidmain(String[]args)throwsException{
- intres=ToolRunner.run(newConfiguration(),newAveragingWithCombiner(),args);
- System.exit(res);
- }
- }