二、Spark Streaming DStream操作

本文详细介绍了Spark Streaming中的DStream转换操作,包括无状态转换如map、filter、reduceByKey等,以及有状态转换的滑动窗口操作,如window、reduceByWindow、updateStateByKey等。同时,文章还提到了DStream的输出操作,如何将处理后的数据输出到文本文件或MySQL数据库。
摘要由CSDN通过智能技术生成

一、DStream转换操作

1、DStream无状态转换操作

每次统计,和之前批次无关,不会进行累计

  1. map(func) :对源DStream的每个元素,采用func函数进行转换,得到一个新的Dstream

  2. flatMap(func): 与map相似,但是每个输入项可用被映射为0个或者多个输出项

  3. filter(func): 返回一个新的DStream,仅包含源DStream中满足函数func的项

  4. repartition(numPartitions): 通过创建更多或者更少的分区改变DStream的并行程度

  5. reduce(func):利用函数func聚集源DStream中每个RDD的元素,返回一个包含单元素RDDs的新DStream

  6. count():统计源DStream中每个RDD的元素数量

  7. union(otherStream): 返回一个新的DStream,包含源DStream和其他DStream的元素

  8. countByValue():应用于元素类型为(K,V)的DStream上,返回一个(K,V)键值对类型的新DStream,每个键的值是在原DStream的每个RDD中的出现次数

  9. reduceByKey(func, [numTasks]):当在一个由(K,V)键值对组成的DStream上执行该操作时,返回一个新的由(K,V)键值对组成的DStream,每一个key的值均由给定的recuce函数(func)聚集起来

  10. join(otherStream, [numTasks]):当应用于两个DStream(一个包含(K,V)键值对,一个包含(K,W)键值对),返回一个包含(K, (V, W))键值对的新Dstream

  11. cogroup(otherStream, [numTasks]):当应用于两个DStream(一个包含(K,V)键值对,一个包含(K,W)键值对),返回一个包含(K, Seq[V], Seq[W])的元组

  12. transform(func):通过对源DStream的每个RDD应用RDD-to-RDD函数,创建一个新的DStream。支持在新的DStream中做任何RDD操作

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值