1、均值和方差
(1)统计学里最基本的概念就是样本的均值、方差、标准差。首先,我们给定一个含有n个样本的集合,下面给出这些概念的公式描述:
均值:
标准差:
方差:
(2)均值描述的是样本集合的中间点。
(3)标准差给我们描述的是样本集合的各个样本点到均值的距离之平均。
(4)示例
以两个集合为
本文介绍了统计学中基本的均值、方差和标准差概念,强调它们在描述样本集合特性上的作用。此外,解释了为何需要引入协方差,用于衡量多维数据中不同变量之间的关联性。通过协方差的正负值,可以判断变量间的关系是正相关、负相关还是独立。最后,讨论了协方差矩阵在处理高维数据时的应用,它是一个对称矩阵,对角线元素表示各维度的方差。
(1)统计学里最基本的概念就是样本的均值、方差、标准差。首先,我们给定一个含有n个样本的集合,下面给出这些概念的公式描述:
均值:
标准差:
方差:
(2)均值描述的是样本集合的中间点。
(3)标准差给我们描述的是样本集合的各个样本点到均值的距离之平均。
(4)示例
以两个集合为

被折叠的 条评论
为什么被折叠?