均值、方差、标准差、协方差的概念及意义

本文介绍了统计学中基本的均值、方差和标准差概念,强调它们在描述样本集合特性上的作用。此外,解释了为何需要引入协方差,用于衡量多维数据中不同变量之间的关联性。通过协方差的正负值,可以判断变量间的关系是正相关、负相关还是独立。最后,讨论了协方差矩阵在处理高维数据时的应用,它是一个对称矩阵,对角线元素表示各维度的方差。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、均值和方差

(1)统计学里最基本的概念就是样本的均值、方差、标准差。首先,我们给定一个含有n个样本的集合,下面给出这些概念的公式描述:

均值:

标准差:

方差:

(2)均值描述的是样本集合的中间点

(3)标准差给我们描述的是样本集合的各个样本点到均值的距离之平均

(4)示例

以两个集合为例,[0, 8, 12, 20] 和  [8, 9, 11, 12]

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值