目录
处理灰度图
一幅图像包括目标物体、背景还有噪声,要想从多值的数字图像中直接提取出目标物体,常用的方法就是设定一个阈值 T,用 T 将图像的数据分成两部分:大于T的像素群和小于T的像素群。这是研究灰度变换的最特殊的方法,称为图像的二值化(Binarization)。
阈值分割法的特点是:适用于目标与背景灰度有较强对比的情况,重要的是背景或物体的灰度比较单一,而且总可以得到封闭且连通区域的边界。
(一)简单阈值
选取一个全局阈值,然后就把整幅图像分成非黑即白的二值图像。
cv2.threshold( )
这个函数有四个参数,第一个是原图像矩阵,第二个是进行分类的阈值,第三个是高于(低于)阈值时赋予的新值,第四个是一个方法选择参数,常用的有:
-
cv2.THRESH_BINARY(黑白二值)
-
cv2.THRESH_BINARY_INV(黑白二值翻转)
-
cv2.THRESH_TRUNC(得到额图像为多像素值)
-
cv2.THRESH_TOZERO(当像素高于阈值时像素设置为自己提供的像素值,低于阈值时不作处理)
-
cv2.THRESH_TOZERO_INV(当像素低于阈值时设置为自己提供的像素值,高于阈值时不作处理)
这个函数返回两个值,第一个值为阈值,第二个就是阈值处理后的图像矩阵。
# encoding: utf-8
import cv2
import matplotlib.pyplot as plt
import math
import copy
import numpy as np
def show_img(name="tes

本文介绍了图像处理中的阈值分割技术,包括简单阈值、自适应阈值和Otsu's二值化方法。简单阈值通过设定全局阈值将图像二值化;自适应阈值利用局部区域的平均值或加权平均值进行局部二值化;Otsu's二值化则自动寻找最佳阈值,尤其适合双峰图像的处理。
最低0.47元/天 解锁文章
2万+

被折叠的 条评论
为什么被折叠?



