目录
1、智能视觉
图像识别
目标检测
风格转换:输入一张图片,输出不同风格的版本
问题:神经网络的输入特征会比较大,可能会出现过拟合、对计算力的要求较高
2、卷积运算
假设有一张6x6x1的图片

有一个卷积核(也可以叫过滤器):过滤器的维度一般都是奇数的:如 1x1、 3x3、 5x5、 7x7

用*代表卷积运算,结果将得到一个 4x4的矩阵。

计算原理
(1)4x4 矩阵的第一个元素

(2)4x4 矩阵的第二个元素原理是一样的,只是需要将过滤器右移 s 步(此处s=1)
(3)4x4 矩阵的第二行的元素,则是需要过滤器向下移动 s 步(此处s=1)
3、边缘检测
边缘是指的黑色与白色交界的地方,也就是物体的轮廓。
边缘可以分为垂直边缘和水平边缘
垂直边缘过滤器

水平边缘过滤器

正边缘:从亮色过渡到暗色的边缘
假设有一张图片,左边亮色,右边灰色,对应的矩阵如右图所示,明显中间的垂直线就是边缘,即10与0的交界处。

使用上面的矩阵和下面的过滤器进行卷积运算

得到结果

中间的高亮部分就对应着前面图片中间垂直边缘。
负边缘:从暗色过渡到亮色的边缘


4、Padding
卷积运算的缺点
-
输出会比较小,比如 6x6 的输入矩阵,输出可能是 4x4
-
输入矩阵边缘部分只使用了一次,但是矩阵内部的元素却使用了多次,因此很多边缘部分的特征没有被采集到。
Paddin可以解决上面两个问题
5、卷积运算后的矩阵大小

n:矩阵维度
p:Padding数量
f:过滤器的维度
s:步长
计算结果向下取整
6、3D卷积


7、池化层

-
池化是非线性下采样的一种形式,主要作用是通过减少网络的参数来减小计算量,并且能够在一定程度上控制过拟合。
-
通常在卷积层的后面会加上一个池化层。池化包括最大池化、平均池化等。其中最大池化是用不重叠的矩形框将输入层分成不同的区域,对于每个矩形框的数取最大值作为输出层,如上图所示。
池化后的矩阵大小

n:矩阵维度
p:Padding数量
f:过滤器的维度
s:步长
8、卷积的好处
减少参数数量,从而降低网络的计算量,同时也可以有助于防止过拟合,而且也可以提高鲁棒性。
1146

被折叠的 条评论
为什么被折叠?



