六、AI学习笔记|智能视觉|卷积神经网络

目录

 

1、智能视觉

2、卷积运算

3、边缘检测

4、Padding

5、卷积运算后的矩阵大小

6、3D卷积

7、池化层

8、卷积的好处


1、智能视觉

图像识别

目标检测

风格转换:输入一张图片,输出不同风格的版本

问题:神经网络的输入特征会比较大,可能会出现过拟合、对计算力的要求较高

2、卷积运算

假设有一张6x6x1的图片

有一个卷积核(也可以叫过滤器):过滤器的维度一般都是奇数的:如 1x1、 3x3、 5x5、 7x7

用*代表卷积运算,结果将得到一个 4x4的矩阵。

计算原理

(1)4x4 矩阵的第一个元素

(2)4x4 矩阵的第二个元素原理是一样的,只是需要将过滤器右移 s 步(此处s=1)

(3)4x4 矩阵的第二行的元素,则是需要过滤器向下移动 s 步(此处s=1)

3、边缘检测

边缘是指的黑色与白色交界的地方,也就是物体的轮廓。

边缘可以分为垂直边缘和水平边缘

垂直边缘过滤器

水平边缘过滤器

正边缘:从亮色过渡到暗色的边缘

假设有一张图片,左边亮色,右边灰色,对应的矩阵如右图所示,明显中间的垂直线就是边缘,即10与0的交界处。

使用上面的矩阵和下面的过滤器进行卷积运算

得到结果

中间的高亮部分就对应着前面图片中间垂直边缘。

负边缘:从暗色过渡到亮色的边缘

4、Padding

卷积运算的缺点

  • 输出会比较小,比如 6x6 的输入矩阵,输出可能是 4x4

  • 输入矩阵边缘部分只使用了一次,但是矩阵内部的元素却使用了多次,因此很多边缘部分的特征没有被采集到。

Paddin可以解决上面两个问题

5、卷积运算后的矩阵大小

n:矩阵维度

p:Padding数量

f:过滤器的维度

s:步长

计算结果向下取整

6、3D卷积

7、池化层

  1. 池化是非线性下采样的一种形式,主要作用是通过减少网络的参数来减小计算量,并且能够在一定程度上控制过拟合

  2. 通常在卷积层的后面会加上一个池化层。池化包括最大池化、平均池化等。其中最大池化是用不重叠的矩形框将输入层分成不同的区域,对于每个矩形框的数取最大值作为输出层,如上图所示。

池化后的矩阵大小

n:矩阵维度

p:Padding数量

f:过滤器的维度

s:步长

8、卷积的好处

减少参数数量,从而降低网络的计算量,同时也可以有助于防止过拟合,而且也可以提高鲁棒性

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值